www.inthinking.co.uk

SL \& HL Answers to Reacting masses \& volumes questions

1. Amount of zinc $=1.20 / 65.38=1.84 \times 10^{-2} \mathrm{~mol}$

Amount of copper(II) sulfate $=50 / 1000 \times 2.00 \times 10^{-1}=1.00 \times 10^{-2} \mathrm{~mol}$
Zinc is in excess and copper(II) sulfate is the limiting reagent
Maximum amount of copper deposited $=1.00 \times 10^{-2} \mathrm{~mol}$
Mass of copper deposited $=1.00 \times 10^{-2} \times 63.55=6.36 \times 10^{-1} \mathrm{~g}(0.636 \mathrm{~g})$
2. Amount of hydrochloric acid $=150 / 1000 \times 1.00=1.50 \times 10^{-1} \mathrm{~mol}$

Amount of calcium carbonate $=10.0 /[40.08+12.01+(3 \times 16.00)]=1.00 \times 10^{-1} \mathrm{~mol}$
$\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
Calcium carbonate is in excess and the hydrochloric acid is the limiting reagent
Amount of carbon dioxide produced $=1 / 2 \times 1.50 \times 10^{-1} \mathrm{~mol}=7.50 \times 10^{-2} \mathrm{~mol}$
Mass of carbon dioxide produced $=7.50 \times 10^{-2} \times 44.01=3.30 \mathrm{~g}$
3. Amount of ethanol $=9.36 /[(2 \times 12.01)+(6 \times 1.01)+16.00]=2.03 \times 10^{-1} \mathrm{~mol}$

Maximum amount of ethene that could be formed $=2.03 \times 10^{-1} \mathrm{~mol}$
Maximum mass of ethene that could be formed $=2.03 \times 10^{-1} \times[(2 \times 12.01)+(4 \times 1.01)]=5.696 \mathrm{~g}$
Percentage yield $=(2.12 / 5.696) \times 100=37.2 \%$
4. Volume $=67.2 \times \underline{302} \times \underline{9.38 \times 10^{4}}=60.9 \mathrm{~cm}^{3}$

$$
\overline{295} \quad \overline{1.06 \times 10^{5}}
$$

or just work out from first principles that increasing the pressure will decrease the volume and increasing the temperature will increase the volume so the new volume $=$ original volume $\times(9.38 \mathrm{x}$ $\left.10^{4}\right) /\left(1.06 \times 10^{5}\right) \times(29.0+273) /(22.0+273)=60.9 \mathrm{~cm}^{3}$.
5. $n=P V / R T$
$n=\left(1.01 \times 10^{5}\right) \times\left(2.50 \times 10^{-3}\right) /(8.31 \times 292)=1.04 \times 10^{-1} \mathrm{~mol}$
Molar mass of gas $=4.59 / 1.04 \times 10^{-1}=44.1 \mathrm{~g} \mathrm{~mol}^{-1}$
6. All hydrocarbons (represented by $\mathrm{C}_{x} \mathrm{H}_{y}$) combust completely to give carbon dioxide and water

$$
\mathrm{C}_{x} \mathrm{H}_{y}(\mathrm{~g})+(\mathrm{x}+\mathrm{y} / 4) \mathrm{O}_{2}(\mathrm{~g}) \rightarrow x \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{y} / 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

After the reaction the volume of the carbon dioxide produced and the excess oxygen $=1000 \mathrm{~cm}^{3}$ Volume of carbon dioxide $=800 \mathrm{~cm}^{3}$ so volume of excess oxygen $=200 \mathrm{~cm}^{3}$ $200 \mathrm{~cm}^{3}$ of $\mathrm{C}_{x} \mathrm{H}_{y}$ reacts with $1300 \mathrm{~cm}^{3}$ of O_{2} to produce $800 \mathrm{~cm}^{3}$ of CO_{2} I volume of $\mathrm{C}_{x} \mathrm{H}_{y}$ reacts with 6.5 volumes of O_{2} to produce 4 volumes of CO_{2} Equal volumes of different gases under the same conditions contain the same number of particles $x=4$ and $(x+y / 4)=6.5$ so $y=10$ The molecular formula of the hydrocarbon is $\mathrm{C}_{4} \mathrm{H}_{10}$

