SL \& HL Answers to Shapes \& polarity questions

1. i. BCl_{3} contains 3 bonding electron pairs around the central boron atom so the shape trigonal planar with angles of 120°.
ii. POCl_{3} contains 4 bonding electron domains so tetrahedral with angles of approximately 109.5°. In fact the $\mathrm{Cl}-\mathrm{P}-\mathrm{Cl}$ bond angle is 103° (see right)
iii. PH_{3} contains 3 bonding \& 1 non-bonding electron pairs so trigonal pyramidal
 with bond angles of approximately 107° (the actual value is 93.5°)
iv. HCN contains two electron domains around the central carbon atom so linear with bond angles of 180°.
2. The sulfur atom in SO_{2} contains three electron domains arranged to give a trigonal planar shape. The two bonding electron domains to the oxygen atoms give the molecule its bent shape with an angle of approximately 120°. In carbon dioxide there are only two electron domains (both bonding) around the central carbon atom so the molecule is linear.
3. O is more electronegative than C so the $\mathrm{C}=\mathrm{O}$ bond is polar. The two $\mathrm{C}=\mathrm{O}$ bonds are at 180° to each other so the resultant polarity is zero.
4. Ammonia contains one non-bonding pair of electrons around the central nitrogen atom. This exerts a greater repulsion than the three bonding pairs so the $\mathrm{H}-\mathrm{N}-\mathrm{H}$ bond angle will be less than 109.5°. In the ammonium ion the four bonding pairs of electrons around the central nitrogen atom give the ion a regular tetrahedral shape with a bond angle of 109.5°.
5. i. In benzene each carbon atom has three electron domains (all bonding) so the bond angles will all be approximately 120°.
ii. In cyclohexane each carbon atom has four electron domains (all bonding) so the bond angles will all be approximately 109.5°.
6. HF is polar as the molecule only contains two atoms with different electronegativity values. $\mathrm{H}_{2} \mathrm{O}$ is polar as the molecule is bent and contains a dipole (see right). CF_{4} is tetrahedral and CO_{2} is linear; in both cases the bond polarities cancel out to give a zero resultant dipole.

HL only questions

7. i. XeF_{4} : 6 electron pairs (4 bonding +2 non-bonding) so square planar
ii. $\mathrm{ICl}_{4}^{-}: 6$ electron pairs (4 bonding +2 non-bonding) so square planar
iii. $\mathrm{ClF}_{3}: 5$ electron pairs (3 bonding +2 non-bonding) so T -shaped (right) (the two non-bonding pairs go in the trigonal pyramid part of the trigonal
 bipyramid basic shape so that they are as far apart from each other as possible).
8. i. PF_{5} (trigonal bipyramid shape so) $90^{\circ}, 120^{\circ}$ and 180°
ii. $\mathrm{PF}_{6}{ }^{-}$(octahedral shape so) 90° and 180°.
