

SL & HL Answers to Theories of acids & bases questions

1. $H_2O(I) + NH_3(aq) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$

Water is acting as a Brønsted-Lowry acid as it is donating a proton to ammonia. Acid / conjugate base pairs: $\rm H_2O$ / $\rm OH^-$ and $\rm NH_4^+/~NH_3$

 $H_2O(I) + HCI(g) \rightleftharpoons H_3O^+(aq) + CI^-(aq)$

Water is acting as a Brønsted-Lowry base as it is accepting a proton from hydrogen chloride. Acid / conjugate base pairs: HCI / CI^- and H_3O^+ / H_2O

2. i. When it acts an acid it is donating a proton so the acid-conjugate base pair is OH^{-}/O^{2-} .

ii. When it acts a base it is accepting a proton so the acid-conjugate base pair is H_2O / OH^- .

3. i. NH₄⁺ ; ii. H₂S.

4. i. CN⁻ ; **ii.** S²⁻.

5. H_2SO_4 and $H_2NO_3^+$

6. ii. H₃O⁺ / OH⁻

I, II and III, show the acid and the conjugate base formed by losing one proton. The conjugate base of H_3O^+ is H_2O not OH^- .

© Dr Geoffrey Neuss, InThinking http://www.thinkib.net/chemistry