

HL Answers to Electrophilic substitution questions

 Each carbon atom is sp² hybridized with each sp² hybrid orbital containing one electron. One of these hybrid orbitals combines with the single electron in the 1s atomic orbital of a hydrogen atom forming a sigma bond. The other two sp² hybrid orbitals each combine with one of the hybrid sp²

orbitals of two other carbon atoms to form sigma bonds. This results in a planar hexagonal ring with bond angles of 120°. The six remaining outer electrons (one on each carbon atom occupying a p orbital) form a delocalized pi bond spread equally above and below the plane of all six carbon atoms.

- ii. It is a catalyst. It functions as an acid, protonating the nitric acid to form $H_2NO_3^+$ which then breaks down to form water and the nitronium ion. $H_2SO_4 + HNO_3 \rightarrow H_2NO_3^+ + HSO_4^-$ then $H_2NO_3^+ \rightarrow NO_2^+ + H_2O$
- iii. The nitronium ion, NO₂⁺.
- **iv.** Substitution, unlike addition, does not involve the extra energy required to overcome the delocalization energy of the benzene ring.

iv. Further nitration of the benzene ring will occur (to form 1,3-dinitrobenzene).

3. i.
$$C_6H_6 + Cl_2 \longrightarrow C_6H_5Cl + HCl$$

ii. Cl⁺.

v.

The AlCl₃ acts as a Lewis acid, accepting a pair of electrons from Cl_2 to form $AlCl_4^-$ and Cl^+ .

© Dr Geoffrey Neuss, InThinking http://www.thinkib.net/chemistry