

SL & HL Answers to Fundamentals of organic chemistry (2) questions

 CH₃CH₂CH₂CH₂CH₂CH₃ or CH₃(CH₂)₄CH₃ : hexane CH₃CH(CH₃)CH₂CH₂CH₂CH₃ : 2-methylpentane CH₃CH₂CH(CH₃)CH₂CH₃ : 3-methylpentane CH₃C(CH₃)₂CH₂CH₃ : 2,2-dimethylbutane CH₃CH(CH₃)CH(CH₃)CH₃ : 2,3-dimethylbutane

2. i. A: carboxyl B: carbonyl (or ketone)

- ii. A: propanoic acid B: butan-2-one (or 2-butanone)
 (Note: As butan2-one is the only ketone isomer of C₄H₈O the name butanone is also acceptable for B.)
- iii. A (propanoic acid) will have the higher boiling point as there is hydrogen bonding between the molecules which are stronger intermolecular forces than the dipole-dipole interactions in B (butan-2-one). Due to hydrogen bonding A will also be more soluble in water.
- 3. (a) I. propan-2-ol (or 2-propanol)
 II. butan-1-ol (or 1-butanol)
 III. 2-methylpropan-2-ol
 - (b) propan-2-ol (I) is secondary butan-1-ol (II) is primary 2-methylpropan-2-ol(III) is tertiary.
- 4. i. Tyrosine: amine (or amino), carboxyl, phenyl and hydroxyl.
 - ii. Aspirin: carboxyl, phenyl and ester.

© Dr Geoffrey Neuss, InThinking http://www.thinkib.net/chemistry