

SL & HL Answers to Spectroscopic identification of organic compounds: Question 1

(a) From the elemental analysis

Element	Amount / mol	Simplest ratio
Carbon	24.3/12.01 = 2.02	1
Hydrogen	4.1 / 1.01 = 4.05	2
Chlorine	71.6 / 35.45 = 2.02	1

the empirical formula is CH₂Cl

(b) From the mass spectrum the molar molecular mass is either 98, 100 or 102 g mol⁻¹. This means that it is twice the empirical mass (49.48 g mol⁻¹) and so the molecular formula is $C_2H_4Cl_2$. The three different molar masses are due to the molecule containing isotopes of chlorine. For M⁺ = 98 both will be ³⁵Cl, for M⁺ = 100 one will be ³⁵Cl and the other ³⁷Cl and for M⁺ = 102 both will be ³⁷Cl. The peak at m/z = 63 will be due to loss of ³⁵Cl (98-35 = 63) and the peak at m/z = 83 will be due to loss of a –CH₃ fragment leaving CHCl₂⁺. (Peaks due to isotopes are not on the syllabus but this does not seem too difficult for students to comprehend).

(c) The peak at 2989 cm⁻¹ is due to C-H. No other helpful information can be obtained. (In fact the peak at 750 cm⁻¹ in the fingerprint region is probably due to C-Cl, but this is not on the syllabus).

(d) The integration trace shows that three of the hydrogen atoms are in the same environment suggesting a $-CH_3$ group and that one is in an environment on its own suggesting $-CHCl_2$. This is confirmed by the upfield chemical shift (5.8 ppm) of this signal relative to the $-CH_3$ shift (2.0 ppm).

All this information taken together confirms that Compound A is 1,1-dichloroethane, CH₃CHCl₂.

© Dr Geoffrey Neuss, InThinking http://www.thinkib.net/chemistry