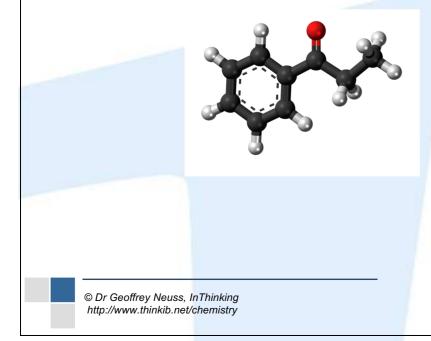


HL Answers to Spectroscopic identification of organic compounds: Question 12

(a) From the elemental analysis

Element	Amount / mol	Simplest ratio
Carbon	80.56/12.01 = 6.71	9
Hydrogen	7.52 / 1.01 = 7.45	10
Oxygen	11.92 / 16.00 = 0.745	1


The empirical formula of **Compound L** is $C_9H_{10}O$

(b) The M⁺ peak at m/z = 134 leads to the conclusion that the molar mass of **Compound L** is the same as the empirical mass and so the molecular formula is $C_9H_{10}O$. The fragment at m/z = 105 suggests loss of an ethyl group to leave $C_7H_5O^+$, the fragment at m/z = 77 is likely to be due to $C_6H_5^+$ which strongly suggests a phenyl group is present in the molecule.

(c) The absorption centred just below 3000 cm⁻¹ is due to C–H absorption. The absorption at 1690 cm⁻¹ shows the presence of a carbonyl group, C=O.

(d) The ¹H NMR spectrum essentially shows that the hydrogen atoms are in three different chemical environments as the trace of two and three at 7.5 ppm and 8 ppm respectively represent the five phenyl hydrogen atoms. The quartet at 2.9 ppm and the triplet at 1.2 ppm are characteristic of the -CH₂ and - CH₃ respectively of an ethyl group.

All this information taken together confirms that **Compound L** is **propiophenone** (ethyl phenyl ketone), $C_6H_5COC_2H_5$.

