HL Answers to Spectroscopic identification of organic compounds: Question 19

(a) From the elemental analysis

Element	Amount $/ \mathrm{mol}$	Simplest ratio
Carbon	$54.52 / 12.01=4.54$	2
Hydrogen	$9.17 / 1.01=9.08$	4
Oxygen	$36.31 / 16.00=2.27$	1

The empirical formula of Compound S is $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
(b) The M^{+}peak at $\mathrm{m} / \mathrm{z}=88$ leads to the conclusion that the molar mass of Compound S is twice the empirical mass and the molecular formula is $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$. The fragment at $\mathrm{m} / \mathrm{z}=59$ is due to the loss of $-\mathrm{C}_{2} \mathrm{H}_{5}$ leaving $\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{+}$. The fragment at $\mathrm{m} / \mathrm{z}=57$ is due to loss of $-\mathrm{OCH}_{3}$ leaving $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}^{+}$.
(c) The absorption at about $3000 \mathrm{~cm}^{-1}$ is due to $\mathrm{C}-\mathrm{H}$. The absorption at $1770 \mathrm{~cm}^{-1}$ shows the presence of a carbonyl group, $\mathrm{C}=\mathrm{O}$ and the absorption at about $1200 \mathrm{~cm}^{-1}$ the presence of a carbon to oxygen single bond, C-O.
(d) The ${ }^{1} \mathrm{H}$ NMR spectrum shows that the hydrogen atoms are in three different chemical environments. These equate to two $-\mathrm{CH}_{3}$ groups and a $-\mathrm{CH}_{2}$ - group. From the loss of the $-\mathrm{OCH}_{3}$ fragment in the mass spectrometer it would seem that one of the $-\mathrm{CH}_{3}$ groups is attached directly to the oxygen atom by a single bond which accounts for the singlet at 3.7 ppm . The quartet and triplet at 2.3 ppm and 1.1 ppm respectively give the characteristic splitting shown by an ethyl group attached to a carbonyl group.

All this information taken together confirms that Compound \mathbf{S} is methyl propananoate,
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{3}$.

