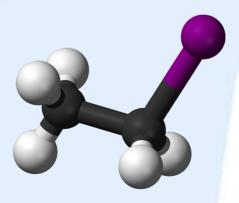


SL & HL Answers to Spectroscopic identification of organic compounds: Question 2


(a) From the elemental analysis

Element	Amount / mol	Simplest ratio
Carbon	15.40/12.01 = 1.28	2
Hydrogen	3.24 / 1.01 = 3.21	5
lodine	81.36 / 126.90 = 0.641	1

the empirical formula is C₂H₅I

- **(b)** The M⁺ peak at 156 is evidence that the molar molecular mass of **Compound B** is 156 g mol⁻¹ and hence its molecular formula is the same as its empirical formula. The fragment at m/z = 27 is due to I⁺ and the fragment at m/z = 29 is due to $C_2H_5^+$. (In fact there is only one compound that can have the formula C_2H_5 I so the compound must be iodoethane).
- (c) The peaks at approximately 3000 cm⁻¹ are due to C–H. No other helpful information can be obtained. (The peak at 1200 cm⁻¹ in the fingerprint region is probably due to C–I, but this is not on the syllabus).
- (d) The integration trace shows that three of the hydrogen atoms are in the same environment suggesting a $-CH_3$ group and that the other two are in a separate environment which suggests $-CH_2I$. This is confirmed by the upfield chemical shift (3.1 ppm) of this signal (due to the more electronegative iodine atom) relative to the $-CH_3$ shift (1.8 ppm).

All this information taken together confirms that Compound B is iodoethane, CH₃CH₂I

