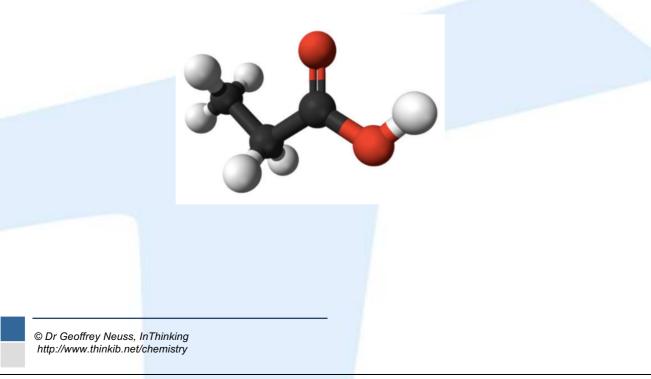


SL & HL Answers to Spectroscopic identification of organic compounds: Question 6

(a) From the elemental analysis

Element	Amount / mol	Simplest ratio
Carbon	48.63/12.01 = 4.05	3
Hydrogen	8.18 / 1.01 = 8.10	6
Oxygen	43.19 / 16.00 = 2.70	2


The empirical formula of **Compound F** is $C_3H_6O_2$

(b) The M⁺ peak at m/z = 74 leads to the conclusion that the molar mass of **Compound F** is the same as the empirical mass so the molecular formula is $C_3H_6O_2$. The fragment at m/z 57 is due to $C_3H_5O^+$ due to the loss of –OH and the fragment at 45 is due to COOH⁺ following the loss of -C₂H₅.

(c) The very broad absorption at approximately 3000 cm⁻¹ shows the presence of –OH and the shoulder at about 2950 cm⁻¹ is due to C–H. The absorption at 1715 cm⁻¹ shows the presence of a carbonyl group, C=O. This supports the mass spectral data that a carboxylic acid is present in **Compound F**.

(d) The ¹H NMR spectrum shows that the hydrogen atoms are in three different chemical environments. These equate to one $-CH_3$ group (integration trace 3) one $-CH_2$ - group (integration trace 2) and a further single hydrogen atom very far upfield at 11.5 ppm which equates to the carboxylic acid hydrogen atom.

All this information taken together confirms that **Compound F** is **propanoic acid**, **CH₃CH₂COOH**.

