

SL & HL Answers to Spectroscopic identification of organic compounds: Question 9

(a) From the elemental analysis

Element	Amount / mol	Simplest ratio
Carbon	66.61/12.01 = 5.55	4
Hydrogen	11.20 / 1.01 = 11.1	8
Oxygen	22.19 / 16.00 = 1.39	1

The empirical formula of Compound I is C_4H_8O

(b) The M⁺ peak at m/z = 72 is evidence that the molar mass of **Compound I** is 72 g mol⁻¹ and hence its molecular formula is the same as its empirical formula, C₄H₈O. The fragment at m/z = 57 is due to loss of -CH₃ leaving C₃H₅O⁺ and the fragment at m/z = 43 is due to loss of -C₂H₅ leaving C₂H₃O⁺. The fragment at m/z = 29 is due to C₂H₅⁺ (it could also be due to CHO⁺).

(c) The peaks at approximately 3000 cm⁻¹ are due to C–H. The absorption at 1750 cm⁻¹ is due to the presence of a carbonyl group, C=O.

(d) The ¹H NMR spectrum shows that the hydrogen atoms are in four different chemical environments. The fact that there is a single hydrogen atom bonded to a carbon atom containing no other hydrogen atoms bonded to it identifies the compound as an aldehyde. It suggests it is an aldehyde with two $-CH_2$ groups (the one nearest to the CO group having a shift of 2.4 ppm) and one $-CH_3$ group with a shift of 0.9 ppm..

All this information taken together confirms that Compound I is butanal, CH₃CH₂COCH₃.

© Dr Geoffrey Neuss, InThinking http://www.thinkib.net/chemistry