HL Questions on Acids \& bases calculations

1. Calculate the pH of:
i. $10.0 \mathrm{~cm}^{3}$ of $1.00 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid solution.
ii. $100 \mathrm{~cm}^{3}$ of $1.00 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid solution.
iii. $10.0 \mathrm{~cm}^{3}$ of $2.00 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$ nitric acid solution.
iv. $10.0 \mathrm{~cm}^{3}$ of $1.00 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution.
v. $10.0 \mathrm{~cm}^{3}$ of $1.00 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ sulfuric acid solution.
vi. $20.0 \mathrm{~cm}^{3}$ of $1.00 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ barium hydroxide solution, $\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})$.
2. A solution has a pH of 3.60 . Calculate:
i. The hydrogen ion concentration.
ii. The hydroxide ion concentration.
iii. The pH if the solution is diluted ten times (assume it is a strong acid as the degree of dissociation increases with dilution for weak acids).
3. State the equations for the reaction of i. ethanoic acid and ii. ammonia with water.
4. Calculate the pH of:
i. $1.00 \times 10^{-3} \mathrm{moldm}^{-3}$ ethanoic acid solution, $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) . \mathrm{K}_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)=1.8 \times 10^{-5}$ at 298 K .
ii. $3.00 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$ ammonia solution, $\mathrm{NH}_{3}(\mathrm{aq}) . K_{b}\left(\mathrm{NH}_{3}\right)=1.8 \times 10^{-5}$ at 298 K .
5. Use Section 21 of the IB Chemistry data booklet to calculate:
i. the pH of $4.00 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$ propanoic acid solution, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}(\mathrm{aq})$.
ii. the pH of $1.00 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$ ethylamine (ethanamine) solution, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}(\mathrm{aq})$.
6. Use Section 21 of the IB data booklet to put the following in order of decreasing acid strength: water, ethanoic acid, phenol, chloroethanoic acid, ethanol, propanoic acid, benzoic acid.
7. The graph on the right shows how the ionic product of water changes with temperature.

Use the graph to determine:
i. the value of K_{w} at $80^{\circ} \mathrm{C}$.
ii. the hydrogen ion concentration at $70^{\circ} \mathrm{C}$.
iii. the hydroxide concentration at $70^{\circ} \mathrm{C}$.
iv. the pH at $50^{\circ} \mathrm{C}$.
v. the pOH at $80^{\circ} \mathrm{C}$.

