

HL Questions on Activation energy

1. At a temperature of 700 K the rate constant for the redox reaction between nitrogen(IV) oxide and carbon monoxide is **1.30** mol⁻¹ dm³ s⁻¹.

 $NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$ $k = 1.30 \text{ mol}^{-1} \text{ dm}^3 \text{ s}^{-1} \text{ at } 700 \text{ K}$

- i. Deduce the overall order of this reaction.
- ii. The activation energy is 133.8 kJ mol⁻¹.

Determine the temperature when the rate constant for the reaction will be 20.0 mol⁻¹ dm³ s⁻¹.

2. In the gas phase methyl isocyanide, H₃CNC, rearranges to form ethanenitrile, H₃CCN.

The table below shows the experimentally determined values of the rate constant for this rearrangement at different temperatures.

Temperature / °C	Rate constant / s ⁻¹
190	2.52 x 10 ⁻⁵
199	5.25 x 10 ⁻⁵
230	6.30 x 10 ⁻⁴
251	3.16 x 10 ⁻³

- i. Determine the overall order of the reaction.
- ii. Write the rate expression for the reaction.
- **iii.** Using a graphical method, determine the activation energy for the rearrangement of methyl isocyanide.
- iv. Determine the value of the rate constant for this reaction at (i) 210 °C and (ii) 283 °C.

© Dr Geoffrey Neuss, InThinking http://www.thinkib.net/chemistry