

SL & HL Questions on Electron configuration

- **1.** Draw and label (using the letters **a**, **b** and **c**) on the energy level diagram below:
 - (a) the electron transition which will give the third line in the visible series of the hydrogen emission spectrum.
 - (b) the electron transition which will give the third line in the ultraviolet series of the hydrogen emission spectrum.
 - (c) the transition that relates to the ionisation energy of a hydrogen atom.

n=∞	
n=7	T
n=6	
n=5	
n=4	
n=3	Energy levels
n=2	
n=1	

- 2. State the full electron configuration of:
 - i. a free nitrogen atom
 - ii. an uncombined bromine atom
 - iii. [Ar]4s²3d⁵ (or [Ar]4s²3d⁵).
 - iv. Fe³⁺
 - $\boldsymbol{v}. \ \text{an uncombined chromium atom}$
 - **vi.** Ge²⁺

3. Complete the boxes using arrows to represent electrons.

(Note that there is some debate about whether the 4s sub-level is lower or higher in energy than the 3d sub-level. – both are acceptable to the IB)

© Dr Geoffrey Neuss, InThinking http://www.thinkib.net/chemistry

- **4.** Explain why it is important to label the x, y and z axes when drawing out the shape of a p orbital.
- **5.** Explain why a potassium atom contains an electron in a 4s orbital with no electrons in a 3d orbital whereas a copper(I) ion, Cu⁺ has the electronic configuration [Ar]3d¹⁰ with no electrons in the 4s orbital.

© Dr Geoffrey Neuss, InThinking http://www.thinkib.net/chemistry