SL \& HL Questions on the pH scale

1. $10.0 \mathrm{~cm}^{3}$ of a solution of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid, $\mathrm{HCl}(\mathrm{aq})$, has a pH of 1 .
i. Deduce the pH of the resulting solution if $90.0 \mathrm{~cm}^{3}$ of distilled are mixed with the above solution.
ii. Deduce the pH of the mixture if a further $900 \mathrm{~cm}^{3}$ of distilled water are added to the solution.
iii. Deduce the pH of the resulting solution if $10.0 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution, $\mathrm{NaOH}(\mathrm{aq})$, are added to $10.0 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid solution.
2. $10.0 \mathrm{~cm}^{3}$ of a solution of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide, $\mathrm{NaOH}(\mathrm{aq})$, has a pH of 13 .
i. Deduce the pH of the resulting mixture if the total volume is made up to $1.00 \mathrm{dm}^{3}$ with distilled water.
ii. Deduce the pH if $9.990 \mathrm{dm}^{3}$ of water is added to $10.0 \mathrm{~cm}^{3}$ of a solution of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide, $\mathrm{NaOH}(\mathrm{aq})$.
iii. Deduce the pH of the resulting solution if $20.0 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution, $\mathrm{NaOH}(\mathrm{aq})$, is added to $10.0 \mathrm{~cm}^{3}$ of a solution of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid, $\mathrm{HCl}(\mathrm{aq})$, followed by the addition of $70.0 \mathrm{~cm}^{3}$ of distilled water.
3. Calculate the pH of i. $0.200 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid solution, $\mathrm{HCl}(\mathrm{aq})$ and ii. 0.200 $\mathrm{mol} \mathrm{dm}{ }^{-3}$ sulfuric acid solution, $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$, (assume sulfuric acid is a strong diprotic acid which is not strictly true).
4. Determine the pH of an alkaline solution with a hydroxide concentration of 3.00×10^{-3} $\mathrm{mol} \mathrm{dm}^{-3}$.
5. The pH of a solution of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid, $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$, is about 3 and the pH of a solution of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ nitric acid, $\mathrm{HNO}_{3}(\mathrm{aq})$, is 1 .
(a) Explain why the solution of ethanoic acid has a higher pH value even though both acids have the same concentration.
(b) Approximately how many times stronger is the nitric acid solution compared to the ethanoic acid solution?
(c) Approximately how much distilled water would need to be added to $25 \mathrm{~cm}^{3}$ of the nitric acid solution so that the resulting mixture has the same pH as the ethanoic acid solution?
6. The pH of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ potassium hydroxide solution, $\mathrm{KOH}(\mathrm{aq})$, is 13 and the pH of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ ammonia solution, $\mathrm{NH}_{3}(\mathrm{aq})$, is about 11. Explain why the pH values of the two solutions are different even though their concentrations
