

HL Questions on Rate expression

- The rate constant for a particular reaction has the value 6.32 x 10⁻¹ dm⁶ mol⁻² s⁻¹. Deduce the overall order of this reaction.
- **2.** Under acid conditions propanone can be brominated. The stoichiometric equation for this reaction is:

 $H^{+}(aq)$ $CH_{3}COCH_{3}(aq) + Br_{2}(aq) \longrightarrow CH_{3}COCH_{2}Br(aq) + H^{+}(aq) + Br^{-}(aq)$

The following experimental data gives the initial rate of the reaction at particular concentrations.

Experiment number	[CH₃COCH₃(aq)] / mol dm⁻³	[Br₂(aq)] / mol dm⁻³	[H⁺(aq)] / mol dm⁻³	Initial rate / mol dm ⁻³ s ⁻¹
1	2.0 x 10 ⁻¹	5.0 x 10 ⁻²	5.0 x 10 ⁻²	5.0 x 10 ⁻⁵
2	2.0 x 10 ⁻¹	1.0 x 10 ⁻¹	5.0 x 10 ⁻²	5.0 x 10 ⁻⁵
3	1.0 x 10 ⁻¹	5.0×10^{-2}	5.0 x 10 ⁻²	2.5 x 10 ⁻⁵
4	1.0 x 10 ⁻¹	5.0×10^{-2}	1.0 x 10 ⁻¹	5.0 x 10 ⁻⁵
5	1.7 x 10 ⁻¹	2.2 x 10 ⁻¹	2.9 x 10 ⁻¹	?

- i. Deduce the order of the reaction with respect to propanone.
- ii. Deduce the order of the reaction with respect to bromine.
- iii. Deduce the order of the reaction with respect to hydrogen ions.
- iv. Deduce the overall order of the reaction.
- v. Write the rate expression for this reaction.
- vi. Calculate the value for the rate constant.
- vii. Calculate the initial rate of reaction for experiment number 5.
- **3.** For a zero order reaction the graph of concentration of reactant against time and the graph of rate of reaction plotted against concentration of reactant will both give a straight line.
 - i. How will these two straight lines differ?
 - ii. Deduce the units of the rate constant for a zero order reaction.
- **4.** Describe how the graph of concentration of reactant against time for a second order reaction will differ to a graph of concentration of reactant against time for a first order reaction.
- 5. Deduce the units of the rate constant for
 - i. a first order reaction.
 - ii. a second order reaction.

© Dr Geoffrey Neuss, InThinking http://www.thinkib.net/chemistry