

MATHEMATICAL METHODS	Name
STANDARD LEVEL	
PAPER 1	
	Number
Friday 8 November 2002 (afternoon)	
1 hour	

INSTRUCTIONS TO CANDIDATES

- Write your name and candidate number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Answer all the questions in the spaces provided.
- Unless otherwise stated in the question, all numerical answers must be given exactly or to three significant figures.
- Write the make and model of your calculator in the box below *e.g.* Casio *fx-9750G*, Sharp EL-9600, Texas Instruments TI-85.

Calculator

Make	Model

EXAMINER	TEAM LEADER	IBCA
TOTAL	TOTAL	TOTAL
/90	/90	/90

Maximum marks will be given for correct answers. Where an answer is wrong, some marks may be given for a correct method provided this is shown by written working. Working may be continued below the box, if necessary. Solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Incorrect answers with no working will normally receive **no** marks.

- 1. Let $f(x) = \sqrt{x^3}$. Find
 - (a) f'(x);
 - (b) $\int f(x) dx$.

Working:	
	Answers:
	(a)
	(b)

2. In triangle ABC, AC = 5, BC = 7, $\hat{A} = 48^{\circ}$, as shown in the diagram.

Find \hat{B} , giving your answer correct to the nearest degree.

Working:	
	Answer:

- 3. Consider the function $f(x) = 2x^2 8x + 5$.
 - (a) Express f(x) in the form $a(x-p)^2 + q$, where $a, p, q \in \mathbb{Z}$.
 - (b) Find the minimum value of f(x).

Working:	
Г	
	Answers:
	(a)
	(b)

4. Find the coefficient of x^3 in the expansion of $(2-x)^5$.

Working:	
	Answer:

Solve the equation $e^x = 5 - 2x$, giving your answer correct to **four** significant figures. 5.

Working:

Answer:

- Given that $\sin x = \frac{1}{3}$, where x is an acute angle, find the **exact** value of 6.
 - (a) $\cos x$;
 - (b) $\cos 2x$.

Working:

Answers:

- (a) _____ (b) _____

- 7. For events *A* and *B*, the probabilities are $P(A) = \frac{3}{11}$, $P(B) = \frac{4}{11}$. Calculate the value of $P(A \cap B)$ if
 - (a) $P(A \cup B) = \frac{6}{11}$;
 - (b) events A and B are independent.

Working:	
	Answers:
	(a)
	(b)

8. The graph of $y = x^3 - 10x^2 + 12x + 23$ has a maximum point between x = -1 and x = 3. Find the coordinates of this maximum point.

Working:

Answer:

9. Three positive integers a, b, and c, where a < b < c, are such that their median is 11, their mean is 9 and their range is 10. Find the value of a.

Working:

Answer:

- **10.** Consider the functions $f: x \mapsto 4(x-1)$ and $g: x \mapsto \frac{6-x}{2}$.
 - (a) Find g^{-1} .
 - (b) Solve the equation $(f \circ g^{-1})(x) = 4$.

Working:

Answers:

- (a)
- (b)
- 11. Calculate the acute angle between the lines with equations

$$r = \begin{pmatrix} 4 \\ -1 \end{pmatrix} + s \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$
 and $r = \begin{pmatrix} 2 \\ 4 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

Working:

Answer:

12. The diagram shows part of the curve $y = \sin x$. The shaded region is bounded by the curve and the lines y = 0 and $x = \frac{3\pi}{4}$.

Given that $\sin \frac{3\pi}{4} = \frac{\sqrt{2}}{2}$ and $\cos \frac{3\pi}{4} = -\frac{\sqrt{2}}{2}$, calculate the **exact** area of the shaded region.

Working:	
	Answer:

13. \$1000 is invested at 15% per annum interest, **compounded monthly**. Calculate the minimum number of months required for the value of the investment to exceed \$3000.

Working:	
	Answer:

- **14.** Consider the trigonometric equation $2\sin^2 x = 1 + \cos x$.
 - (a) Write this equation in the form f(x) = 0, where $f(x) = a \cos^2 x + b \cos x + c$, and $a, b, c \in \mathbb{Z}$.
 - (b) Factorize f(x).
 - (c) Solve f(x) = 0 for $0^{\circ} \le x \le 360^{\circ}$.

Working:	
	Answers:
	(a)
	(b)
	(c)

15. The sketch shows part of the graph of y = f(x) which passes through the points A(-1, 3), B(0, 2), C(1, 0), D(2, 1) and E(3, 5).

A second function is defined by g(x) = 2f(x-1).

- (a) Calculate g(0), g(1), g(2) and g(3).
- (b) On the same axes, sketch the graph of the function g(x).

Working:	
	Answer:
	(a)