
Computer Science

First examinations 2006

b

DIPLOMA PROGRAMME

COMPUTER SCIENCE

First examinations 2006

International Baccalaureate Organization

Buenos Aires Cardiff Geneva New York Singapore

Diploma Programme

Computer science

International Baccalaureate Organization, Geneva, CH-1218, Switzerland

First published in April 2004

by the International Baccalaureate Organization
Peterson House, Malthouse Avenue, Cardiff Gate

Cardiff, Wales GB CF23 8GL
UNITED KINGDOM

Tel: + 44 29 2054 7777
Fax: + 44 29 2054 7778
Web site: www.ibo.org

© International Baccalaureate Organization 2004

Glossary of computer science terms
© British Informatics Society Ltd. 1997–98
© The British Computer Society 2002,
adapted and reprinted by permission of Pearson Education Limited.

The IBO is grateful for permission to reproduce and/or translate any copyright
material used in this publication. Acknowledgments are included, where appropriate,
and, if notified, the IBO will be pleased to rectify any errors or omissions at the
earliest opportunity.

IBO merchandise and publications in its official and working languages can be
purchased through the online catalogue at www.ibo.org, found by selecting
Publications from the shortcuts box. General ordering queries should be directed to
the sales department in Cardiff.

Tel: +44 29 2054 7746
Fax: +44 29 2054 7779
E-mail: sales@ibo.org

Printed in the United Kingdom by the International Baccalaureate Organization, Cardiff.

639

CONTENTS

INTRODUCTION 1

NATURE OF THE SUBJECT 3

RESOURCES 4

CURRICULUM MODEL 5

AIMS 6

OBJECTIVES 7

OBJECTIVES AND ACTION VERBS 8

SYLLABUS OUTLINE 10

SYLLABUS DETAILS 12

THE CASE STUDY 46

ASSESSMENT OUTLINE 48

ASSESSMENT DETAILS 50

MASTERY 64

APPENDIX 1 69

APPENDIX 2 92

APPENDIX 3 117

APPENDIX 4 118

© International Baccalaureate Organization 2004 1

INTRODUCTION

The International Baccalaureate Diploma Programme (DP) is a rigorous pre-university course of
studies, leading to examinations, that meets the needs of highly motivated secondary school students
between the ages of 16 and 19 years. Designed as a comprehensive two-year curriculum that allows its
graduates to fulfill requirements of various national education systems, the DP model is based on the
pattern of no single country but incorporates the best elements of many. The DP is available in
English, French and Spanish.

The programme model is displayed in the shape of a hexagon with six academic areas surrounding the
core. Subjects are studied concurrently and students are exposed to the two great traditions of learning:
the humanities and the sciences.

DP students are required to select one subject from each of the six subject groups. At least three and
not more than four are taken at higher level (HL), the others at standard level (SL). HL courses
represent 240 teaching hours; SL courses cover 150 hours. By arranging work in this fashion, students
are able to explore some subjects in depth and some more broadly over the two-year period; this is a
deliberate compromise between the early specialization preferred in some national systems and the
breadth found in others.

INTRODUCTION

2 © International Baccalaureate Organization 2004

Distribution requirements ensure that the science-orientated student is challenged to learn a foreign
language and that the natural linguist becomes familiar with science laboratory procedures. While
overall balance is maintained, flexibility in choosing HL concentrations allows the student to pursue
areas of personal interest and to meet special requirements for university entrance.

Successful DP students meet three requirements in addition to the six subjects. The interdisciplinary
theory of knowledge (TOK) course is designed to develop a coherent approach to learning that
transcends and unifies the academic areas and encourages appreciation of other cultural perspectives.
The extended essay of some 4,000 words offers the opportunity to investigate a topic of special
interest and acquaints students with the independent research and writing skills expected at university.
Participation in the creativity, action, service (CAS) requirement encourages students to be involved in
creative pursuits, physical activities and service projects in the local, national and international
contexts.

First examinations 2006

© International Baccalaureate Organization 2004 3

NATURE OF THE SUBJECT

Problem solving
Computer science involves solving problems using computers. Therefore a full understanding of
logical problem solving is required as well as a detailed knowledge of how computers operate.
Successful computerized systems result from: a clear understanding of the problem to be solved;
appropriate use of hardware based on a detailed knowledge of its capabilities and limitations; efficient
use of algorithms and data structures; thorough and logical design; careful testing and integration of all
these components. Students of Diploma Programme computer science will be guided by problem-
solving strategies that will be continually reinforced in their coursework. Initial stages of the process
will involve identifying and defining the problem(s) to be solved using a computerized system. The
problem will be broken down (decomposed) into parts, with each part requiring a particular solution.
From this problem definition, the student will construct appropriate algorithms to create a solution.
The emphasis should be on the use of a logical approach and analytical thinking while using a
computer to solve problems.

Java
Students are expected to acquire mastery of the specified aspects of Java. Suitable mechanisms include
encapsulation, polymorphism and inheritance, although other structured approaches are possible.
Mastery of a particular aspect (or mechanism) of computer science is defined as the ability to use that
aspect appropriately for some non-trivial purpose that is well documented. Mastery will be
demonstrated through work submitted in the program dossier.

The courses
The computer science standard level (SL) course focuses on software development, fundamentals of
computer systems and the relationship between computing systems and society. The higher level (HL)
course encompasses all these elements but is extended to include: computer mathematics and logic;
advanced data structures and algorithms; further system fundamentals; and file organization.

4 © International Baccalaureate Organization 2004

RESOURCES

Facilities required
The facilities considered essential to teaching computer science are access to:

• one personal computer (workstation) per student while carrying out programming work, both
during normal class time and out-of-class hours

• a compiler and editor for Java including debugging tools

• a printer

• the Internet.

Facilities recommended
The facilities recommended, but not considered essential, are access to:

• a network

• a variety of other equipment/devices (for example, scanner, CD-ROM).

Facilities not required
The facilities not required are access to:

• control/robotic devices

• CASE tools.

© International Baccalaureate Organization 2004 5

CURRICULUM MODEL

Both standard level (SL) and higher level (HL) students must study a common core (CC) of material
and must demonstrate problem-solving skills and mastery of various aspects of computer science by
completing a program dossier (PD). In addition, HL students must study additional higher level
material (AHL) that fulfills two functions: it extends some topics in the CC, to give greater depth, and
at the same time, introduces new topics to provide greater breadth.

The existence of a common core will allow teachers to teach SL and HL students together (where
necessary), for at least part of the time. This curriculum model should not be taken to imply that it is
intended that SL and HL students should be taught together. The IBO does not support the joint
teaching of students at different levels, which does not provide the greatest educational benefit for
either level, but recognizes that it can be a necessity in some schools.

Common Core (CC) (All students)

Additional HL Material (AHL) (HL students only)

Programme Dossier (PD) (All students)

Teaching time
The teaching time that should be allocated to this model is in accordance with the Diploma
Programme requirement of 150 hours for SL courses and 240 hours for HL courses. The distribution is
as follows:

Part of model Target Class time

Common core all students 125 hours

Additional HL material HL students only 80 hours

SL students 25 hours
Program dossier

HL students 35 hours

The hours stated do not include time out of class for access to a computer (with the appropriate
compiler and editor) required for the development of programs related to the syllabus and in
connection with the program dossier.

6 © International Baccalaureate Organization 2004

AIMS

The aims of all courses in group 5 are to enable students to:

• appreciate the multicultural and historical perspectives of all group 5 subjects

• enjoy the courses and develop an appreciation of the elegance, power and usefulness of the
subjects

• develop logical, critical and creative thinking

• develop an understanding of the principles and nature of the subject

• employ and refine their powers of abstraction and generalization

• develop patience and persistence in problem solving

• appreciate the consequences arising from technological developments

• transfer skills to alternative situations and to future developments

• communicate clearly and confidently in a variety of contexts.

© International Baccalaureate Organization 2004 7

OBJECTIVES

At the end of either the standard level (SL) or higher level (HL) computer science courses, students
will be expected to fulfill the following objectives.

1. Demonstrate an understanding of: terminology, concepts, processes, structures, techniques,
principles, systems and consequences (social significance and implications) of computing.

2. Apply and use: terminology, concepts, processes, structures, techniques, principles and
systems of computing.

3. Analyse, discuss and evaluate: terminology, concepts, processes, structures, techniques,
principles, systems and consequences (social significance and implications) of computing.

4. Construct: processes, structures, techniques and systems of computing.

8 © International Baccalaureate Organization 2004

OBJECTIVES AND ACTION VERBS

These apply to the assessment statements and computer science examination questions. Teachers are
advised to ensure that their students are familiar with these definitions. Students may be guided on the
meaning of the action verbs used in specific questions.

Objective 1

Define Give the precise meaning of a word or phrase as concisely as possible

Draw Represent by means of pencil lines. Add labels unless told not to do so. (Sometimes
objective 2.)

State Give a specific name or other brief answer. No supporting argument or calculation is
necessary.

Objective 2

Apply Use an idea, equation, principle, theory or law in a new situation. (Sometimes
objective 3.)

Calculate Find an accurate answer using mathematical or other formal methods. Show the
working unless instructed not to do so. “Convert”, “Express” or “Simplify” may be
used to refer to specific forms of calculation. (Sometimes objective 3.)

Describe Give a detailed account, including all the relevant information.

Estimate Find an approximate answer, generally using mathematical methods.

Identify Find an answer from a number of possibilities. (Sometimes objective 3.)

Outline Give a brief account or summary, including essential information only.

Trace Follow and record the action of an algorithm. (Sometimes objective 3.)

OBJECTIVES AND ACTION VERBS

© International Baccalaureate Organization 2004 9

Objective 3

Analyse Interpret information to reach conclusions.

Compare Give an account of similarities and differences between two (or more) items, referring
to both (all) of them throughout. Comparisons can be given using a table.

Discuss Give an account including, where possible, a range of arguments and assessments of
the relative importance of various factors or comparison of alternative hypotheses or
ideas.

Explain Give a clear account including causes, reasons or mechanisms.

Evaluate Assess the implications and limitations. (Sometimes objective 4.)

Objective 4

Construct Formulate and/or assemble information in a logical manner.

Design Produce a plan, object, simulation or model.

Determine Find the only possible answer. (Sometimes objective 2.)

Suggest Propose a solution, hypothesis or other possible answer.

10 © International Baccalaureate Organization 2004

SYLLABUS OUTLINE

Computer science

Common core (HL and SL students) 125 hrs

Topic 1—Systems life cycle and software development 35 hrs

 1.1 The systems life cycle 8 hrs

 1.2 Systems analysis 4 hrs

 1.3 Systems design 4 hrs

 1.4 Social significance and implications of computer systems 5 hrs

 1.5 Software life cycle 2 hrs

 1.6 Software design 8 hrs

 1.7 Documentation 4 hrs

Topic 2—Program construction in Java 50 hrs

Topic 3—Computing system fundamentals 37 hrs

 3.1 Language translators 2 hrs

 3.2 Computer architecture 12 hrs

 3.3 Computer systems 5 hrs

 3.4 Networked computer systems 8 hrs

 3.5 Data representation 6 hrs

 3.6 Errors 2 hrs

 3.7 Utility software 2 hrs

Case study 3 hrs

SYLLABUS OUTLINE

© International Baccalaureate Organization 2004 11

Program dossier

Standard level (SL) 25 hrs

Higher level (HL) 35 hrs

Additional HL material (HL students only) 80 hrs

Topic 4—Computer mathematics and logic 11 hrs

 4.1 Number systems and representations 6 hrs

 4.2 Boolean logic 5 hrs

Topic 5—Abstract data structures and algorithms 41 hrs

 5.1 Fundamentals 3 hrs

 5.2 Static data structures 8 hrs

 5.3 Dynamic data structures 14 hrs

 5.4 Objects in problem solutions 6 hrs

 5.5 Recursion 6 hrs

 5.6 Algorithm evaluation 4 hrs

Topic 6—Further system fundamentals 15 hrs

 6.1 Processor configuration 2 hrs

 6.2 Magnetic disk storage 1 hr

 6.3 Operating systems and utilities 2 hrs

 6.4 Further network fundamentals 4 hrs

 6.5 Computer/peripheral communication 6 hrs

Topic 7—File organization 10 hrs

Case study (Extended study) 3 hrs

12 © International Baccalaureate Organization 2004

SYLLABUS DETAILS

Format of the syllabus
Each part of the syllabus provides the following information.

• Topics: These are numbered 1–3 (for CC) and 4–7 (for AHL).

• Subtopics: These are numbered 1.1, 1.2 and so on. Each has an estimated teaching time.

• Assessment statements: These are numbered 1.1.1, 1.1.2 and so on.

• Teaching notes: These appear in a separate column.

• Assessment objectives (Obj): These are indicated by 1, 2, 3 or 4. (See the objectives.)

Assessment statements
The assessment statements form an examination syllabus, not a teaching syllabus, and are intended to
prescribe to examiners what can be assessed by means of the written examinations. Each statement is
classified according to the computer science assessment objectives 1, 2, 3 or 4 using appropriate action
verbs. The objectives are relevant for balance within the syllabus and the examinations.

The action verbs are important because they give guidance to students and teachers about the depth
and breadth required. It is important that students are aware of the meaning of these action verbs so
that they know precisely the intent of examination

SYLLABUS DETAILS

© International Baccalaureate Organization 2004 13

Time allocation
The recommended teaching time for a Diploma Programme SL subject is 150 hours; the
corresponding time for an HL subject is 240 hours. The time allocations given in the syllabus outline
and the syllabus details are approximate, and are intended to suggest how time might be divided
between the various topics and the program dossier. However, the exact time spent on each topic will
depend on a number of factors, including students’ background knowledge and their level of
preparedness.

For computer science SL it is expected that 25 hours’ teaching time will be spent on work for the
program dossier; this value increases to 35 hours for HL. These hours do not include time out of class for
access to a computer (with the appropriate compiler/interpreter) required for the development of
programs related to the syllabus and in connection with the program dossier. (See the curriculum model.)

Use of calculators
Calculators can be used in the course but are not allowed in examinations.

Teacher support materials
A variety of teacher support materials to accompany this guide is being produced. These will include
guidance for teachers marking program dossiers, and specimen examination papers and markschemes.

Common Core
Topic 1—Systems life cycle and software development
Students should understand the tasks that a systems analyst would perform when considering a situation that may be computerized. These and subsequent
tasks included within the systems life cycle are covered in this topic. An understanding and mastery of some of these aspects is expected to be reflected in the
program dossier.

Students should learn to analyse and solve problems, not just to write programs. The software life cycle involves several stages, and students are expected to
be involved at some level in all stages. Good systems analysis should include investigation, data collection, careful planning and thorough documentation. If
the problem is analysed properly, the implementation will be easier and more successful.

1.1—The systems life cycle 8 hrs

© International Baccalaureate Organization 2004 14

 Assessment statement Teaching note Obj

1.1.1 Outline the systems life cycle in terms of the stages: analysis, design,
implementation, operation and maintenance.

Other models are acceptable as long as they emphasize the cyclical
nature of the problem-solving process.

2

1.1.2 Explain the importance of collecting data during the analysis stage. 3

1.1.3 Compare methods of data collection.

Examples are: interviewing current users and domain experts,
constructing questionnaires, observing current systems and studying
prospective user-based documentation.

3

1.1.4 Describe the production of a requirements specification during the
analysis stage.

 This may include: a definition of inputs and outputs, a list of tools,
facilities, people available for developing the solution, and a
schedule for the next stages of the project.

2

1.1.5 Outline the features of a feasibility report.

A feasibility report may be produced during the analysis phase, the
design phase, or both. It may include: a brief description of the
proposed system; estimated costs; economic, technical and legal
responsibility; and a possible completion date.

2

Topic 1—Systems life cycle and software development (continued)

© International Baccalaureate Organization 2004 15

 Assessment statement Teaching note Obj

1.1.6 Compare the advantages and disadvantages of alternative solutions
in the design stage. This should include both hardware and software
solutions.

Several possible solutions should be considered and evaluated by
asking questions such as: What kind of output should be produced?
Where will the input data come from and how will it be entered?
Should the system be centralized or networked? Should computers
be used at all? Should standard software packages be used? How
much customization is desirable? The emphasis should be on
modular organization. The human–computer interface should be
considered.

3

1.1.7 Discuss methods of testing systems, the importance of proper testing
and the implications of inadequate testing.

Students must be able to propose suitable test data, with reasons,
during the design and implementation stages.

3

1.1.8 Outline methods of implementing new systems.

Methods include: running old systems in parallel with new systems,
direct changeover and phased introduction. Training implications
and possible disruption during installation should be considered.

2

1.1.9 Outline the features and importance of maintaining systems.

Features to be considered include periodic reviews, performance
evaluation and clear documentation, to facilitate modifications.

2

Topic 1—Systems life cycle and software development (continued)

© International Baccalaureate Organization 2004 16

1.2—Systems analysis 4 hrs

Students should learn to investigate and analyse problems at the system level before beginning to think about a solution (algorithms). Students should be able
to read and construct system flowcharts.
 Assessment statement Teaching note Obj

1.2.1 Explain the importance of formulating a problem precisely. 3

1.2.2 Discuss the aspects that must be considered in a specified problem. Students should realize that activities such as interviews,
questionnaires and literature searches are required to discover the
relevant aspects.

3

1.2.3 Identify the outcomes that an appropriate solution must produce to
solve a specified problem.

 2

1.2.4

Topic 1—Systems life cycle and software development (continued)

© International Baccalaureate Organization 2004 17

 Assessment statement Teaching note Obj

1.3.3 Outline suitable means of data capture and output presentation for a
system.

 2

1.3.4 Design appropriate data structures to store data within a system. 4

1.3.5 State the hardware components that are appropriate for a system. 1

1.3.6 Outline a suitable interface between a system and users. 2

1.3.7 Analyse a systems flowchart that represents a complete system. 3

1.3.8 Construct a systems flowchart to represent a complete system. Symbols that students should use appear in appendix 3. 4

1.4—Social significance and implications of computer systems 5 hrs
 Assessment statement Teaching note Obj

1.4.1 Discuss the social and economic implications of the installation of
new systems.

See 1.1.8 for installation methods to be considered. 3

1.4.2 Discuss the social significance and implications of the widespread
use of computers in society.

The social significance must be treated by reference to economic,
political, cultural and environmental consequences. These include:
effects on employment (resulting in changes to the working
environment, retraining and so on); computers (hacking, viruses and
so on); ethical and legal requirements; data storage (preserving
privacy, data protection and so on); software users (copyright,
software licensing and so on).

3

1.4.3 Discuss current trends in computer systems and the consequences of
these trends.

 3

Topic 1—Systems life cycle and software development (continued)

© International Baccalaureate Organization 2004 18

1.5—Software life cycle 2 hrs
 Assessment statement Teaching note Obj

1.5.1 Outline the major stages in the software life cycle. One model includes: systems analysis, leading to a precise statement
of the problem that needs solving (a requirements specification);
software design; program construction, including testing and
debugging; installation and operation; and maintenance. Other
models are acceptable, as long as they emphasize the cyclical nature
of the life cycle.

2

1.5.2 Explain why software production is normally cyclical. Students should understand that computer systems are used over long
periods of time. The software in these systems requires periodic
improvement. After the original design and implementation, further
analysis, redesign and restructuring are required to accommodate
changing needs. This will continue through many cycles of analysis,
design, implementation and use.

3

1.6—Software design 8 hrs
 Assessment statement Teaching note Obj

1.6.1 Outline the data required to solve a problem that the students have
not encountered before, including data file formats, input and output
requirements with appropriate user interfaces.

For example, screens, OMR forms, report formats.

 2

1.6.2 Discuss the advantages of modularity in designing a solution to
problems.

 3

1.6.3 Define the term prototyping. 1

Topic 1—Systems life cycle and software development (continued)

© International Baccalaureate Organization 2004 19

Assessment statement Teaching note Obj

1.6.4 2

1.6.5 3

1.6.6 2

1.6.7 2

1.6.8

Outline the prototyping approach to systems design and
development.

Discuss the advantages to end-users and systems designers of using
the prototyping approach.

Outline the efficiency of a solution in terms of storage requirements,
memory requirements, and speed.

Outline how programs can be tested and debugged.

Describe the role of tools in constructing, testing and debugging
programs.

Prototyping can be done at many levels of sophistication. For the
purposes of this course prototyping is limited to the presentation of a
preliminary solution that may not be functional.

Prototyping can be used with end-users for the purpose of obtaining
feedback at an early stage in the design process. Prototyping can be
used by systems designers to investigate alternative solutions to a
problem.

Only a qualitative treatment or a specific calculation is expected;
“O” or BigO notation is required only at HL. (See 5.6, Algorithm
evaluation.)

Testing implies tracing sections of an algorithm, including responses
to errors (“dry runs”), as well as the design of test cases, which are
then executed. Students must be able to propose suitable test data,
and give reasons. Debugging has the components of detecting,
diagnosing and correcting errors shown up by testing.

Ideally, students should use an integrated development environment
(IDE) combining an editor, interpreter or compiler and debugging
tools, but this is not a requirement.

2

Topic 1—Systems life cycle and software development (continued)

© International Baccalaureate Organization 2004 20

1.7—Documentation 4 hrs
 Assessment statement Teaching note Obj

1.7.1 Outline why documentation is needed at each stage of the systems
life cycle.

 2

1.7.2 Explain the features of documentation for design, programming and
maintenance, that is, system documentation.

Students are required to document their problem-solving process
according to the standards described in the guidelines for program
dossiers. Program listings must also be thoroughly documented.

3

1.7.3 Explain the features of documentation for the user, that is, user
documentation.

Students are required to write end-user instructions according to the
standards described in the guidelines for the program dossier.
Students should know that other user manuals may be needed (for
example, on-line help systems and installation manuals where
systems are installed by personnel other than end-users), but they are
not required to write such documentation.

3

Topic 2—Program construction in Java

2.1—Program construction in Java 50 hrs
Discussion of the material in this subtopic will play a major role in the development of program dossiers. While 50 hours have been allocated it should be
noted that some of the 25 hours allocated as teacher contact time will also be used in discussion of these aspects. The high-level language must be Java syntax
as specified in appendix 2.

© International Baccalaureate Organization 2004 21

 Assessment statement Teaching note Obj

2.1.1 Apply the following high-level language constructs appropriately in
order to implement a software design expressed in Java.

• Declare variables and types with appropriate scope,
distinguishing between private and public identifiers.

• Define and apply user-defined objects.
• Format output in a user-friendly manner.
• Construct and calculate arithmetic, relational and Boolean

expressions (only and, or, not) using appropriate operators
(&&, || and !) and taking into account their precedence.

• Construct and calculate the value of modulo arithmetical
expressions “mod”, “div” using appropriate operators (%, /) and
taking into account their precedence.

• Implement the remaining algorithm constructs in Java: arrays,
objects, selection constructs (branching), file operations,
iteration constructs (looping), sentinels and flags.

• Use built-in subprograms, including those of the Java foundation
classes specified in appendix 2.

• Define and apply user-defined methods.
• Demonstrate an understanding of method signatures.
• Demonstrate an understanding of the use of parameters, including

object and primitive parameter passing and return values.
• Demonstrate an understanding of the scope of Java identities,

restricted to the keywords private and public.
• Define primitive, class, object, data member, method, method

signature and constructor.

 3

Topic 2—Program construction in Java (continued)

© International Baccalaureate Organization 2004 22

 Assessment statement Teaching note Obj

2.1.2 Apply appropriate data types and data structures to solve a problem
that students have not encountered before.

Required data types are integer, real, character and Boolean.
Required data structures are strings, one-dimensional arrays, two-
dimensional arrays, records and files.

3

2.1.3 Describe the nature and function of the data types and data structures
stated in 2.1.2.

 2

2.1.4 Trace algorithms in Java. See appendix 2. Examination questions will always use Java
whenever code needs to be displayed; therefore students must be
able to understand algorithms presented in this language. The
algorithms may be either the standard algorithms in the syllabus, or
algorithms of equivalent complexity that the students have not seen
before. The algorithms may use any of the data types and structures
listed in 2.1.2.

2

2.1.5 Evaluate algorithms written in Java with respect to efficiency,
correctness and appropriateness for a task.

See note in 2.1.4. 3

2.1.6 Construct algorithms in Java. See note in 2.1.4. 4

2.1.7 Explain the need for searching and sorting. 3

2.1.8 Apply sequential (linear) and binary search algorithms, selection and
bubble sort algorithms to problems, including some not encountered
before.

Searching and sorting provide good examples for studying the
design, development and analysis of algorithms. Students should be
able to discuss the appropriate circumstances for the use of each
algorithm. In examinations they may be given descriptions of other
algorithms to be developed.

3

2.1.9 Compare the efficiency of the specific searching and sorting
algorithms mentioned in 2.1.8.

 3

2.1.10 Discuss the efficiency of specific searching and sorting algorithms. BigO notation is not required at SL. 3

Topic 2—Program construction in Java (continued)

© International Baccalaureate Organization 2004 23

 Assessment statement Teaching note Obj

2.1.11 Describe syntax errors, logic errors, and run-time errors. Overflow, underflow and truncation errors may arise during program
development and so they may be discussed, but they will not be
examined at SL.

2

Topic 3—Computing system fundamentals
This topic covers computer systems (their hardware and software) and how they interact.

3.1—Language translators 2 hrs

© International Baccalaureate Organization 2004 24

 Assessment statement Teaching note Obj

3.1.1 Define syntax and semantics. 1

3.1.2 Describe the function of high-level language translators. The translators should be limited to interpreters and compilers. 2

3.1.3 Outline the use of software development tools. Examples include: database management systems, macros, CASE
tools and simple language translators (interpreters and compilers are
not suitable examples in this context), HTML editor, web page
editor, code editor, visual IDE.

2

3.2—Computer architecture 12 hrs
 Assessment statement Teaching note Obj

3.2.1 Outline the structure of the central processing unit (CPU) including
the functions of the control unit (CU), the arithmetic and logic unit
(ALU), primary memory and address buses.

Students are expected to be able to reproduce a basic diagram
illustrating the CPU and to know that each location in primary
memory has a unique address.

2

3.2.2 Outline the meaning of the terms bit (b) and byte (B) and their
derivatives.

Students must understand that everything in a computer is held and
processed in binary, hence the relation between bits, bytes and so on
in powers of 2. For example 1kilobyte = 210. They should be familiar
with the prefixes T, G, M, k and their use in computer science
measure. They must be able to apply the prefixes T, G, M and k to
bits and bytes. For example TB (terabytes), Gb (gigabits), MB
(megabytes).

2

3.2.3 Outline the meaning of the terms word, register and address and their
use in the storage of data and instructions.

The study of specific registers is not required. 2

Topic 3—Computing system fundamentals (continued)

© International Baccalaureate Organization 2004 25

 Assessment statement Teaching note Obj

3.2.4 Outline the steps in the machine instruction cycle: fetch, decode,
execute and store.

A single processor model is sufficient. The study of a specific CPU
is not required.

2

3.2.5 Outline the characteristics of primary memory and the difference
between volatile and non-volatile memory.

Students must understand the function of RAM, ROM and cache
memory and their typical sizes (in bytes). The way in which virtual
memory can be used to expand primary memory must be understood
but details of paging are not needed.

2

3.2.6 Outline the characteristics of secondary memory and define
sequential and direct access.

Secondary memory should refer to flash memory, disks, CDs and
DVDs and tape. Students must know the type of access of the above
secondary memory media. They should also be able to give an
application of each type and justify its use for this application.

2

3.2.7 Outline the function of a microprocessor designed to perform one or
a limited number of functions (within a car, washing machine and so
on).

The need for different types of memory in a microprocessor must be
understood. Students must be able to quote at least one example of
the use of a microprocessor and state the inputs and outputs.

2

3.2.8 Discuss the features, advantages, disadvantages and applications of
specific input and output devices and the media used by each.

Students must know the following features: mouse, keyboard, touch
screen, optical character recognition (OCR), magnetic ink
recognition (MICR), scanners (page, mark sense and barcode), LCD
panels, speech recognition, sensors, digital cameras, graphics tablets,
printers, plotters, monitors, robotics, sound. Technical details are not
required unless introduced in the case study.

3

3.2.9 Outline recent developments in computer system architecture
including processor architecture, primary memory technologies and
secondary memory devices.

Technical details are not required unless introduced in the case study. 2

Topic 3—Computing system fundamentals (continued)

© International Baccalaureate Organization 2004 26

3.3—Computer systems 5 hrs
 Assessment statement Teaching note Obj

3.3.1 Define the term “operating system”. Knowledge of specific operating systems is not required. 1

3.3.2 Outline the functions of operating systems. Functions include: communicating with peripherals; coordinating
concurrent processing of jobs; memory management, resource
monitoring, accounting and security; program and data management;
providing appropriate user interfaces.

2

3.3.3 Discuss the characteristics of various computer systems including
single users and multi-users, in both single-tasking and multi-tasking
environments.

The terms multi-access and multi programming should be
understood but details of the way in which they are managed will not
be examined.

3

3.3.4 Compare the characteristics and applications of different kinds of
computers.

Personal computers, portable computers, mainframes and
supercomputers should be considered. Characteristics must include:
primary and secondary memory size; input/ouput (I/O) devices;
environment (size, convenience, where it is used); cost, users (multi-
or single-); and processor (word length, bus size and frequency).

3

3.3.5 Outline the principal characteristics of batch processing, online
(interactive) processing and real-time processing.

 2

3.3.6 Outline applications that use each of the processing methods in 3.3.5:
batch processing (payroll and bank cheque processing); interactive
(online) processing; word processing; computer games; real-time
processing (air traffic control and monitoring of patients in hospital
intensive care).

 2

3.3.7 Explain the relationship between master and transaction files. This should relate to the examples in 3.3.6. 3

3.3.8 Discuss the reliability of the system including the implications of
failure.

The need for, and use of, backing-up strategies, mirrored systems
and the utilities in 3.7.

3

Topic 3—Computing system fundamentals (continued)

© International Baccalaureate Organization 2004 27

3.4—Networked computer systems 8 hrs
 Assessment statement Teaching note Obj

3.4.1 Define local area network (LAN), wide area network (WAN), server
and client.

 1

3.4.2 Explain basic network topologies. Students must be able to explain and illustrate star and bus networks
as well as hybrids involving both these networks.

3

3.4.3 Explain the hardware required in networking. Hardware should include communications links (cables, microwave,
fibre optics and so on) hub, switch, node and router.

3

3.4.4 Define the terms “standard protocol”, “data integrity” and “data
security” in the context of data transmission across a network.

Students must know that standard protocols are a set of rules that are
internationally recognized in the transmission of data. The difference
between data security and data integrity must also be recognized.
Students do not need to know specific or technical details such as the
ISO (OSI) system of layers, TCP/IP and so on.

1

3.4.5 Explain the software involved in networking. Students must understand the role of communications software in
connecting local and wide area networks and the need to deal with
protocols and data security.

3

3.4.6 Describe suitable methods to ensure data integrity in the transmission
of data.

Error-checking codes such as check sums (block character checks)
and parity checks must be understood. The reasons for re-
transmission should be understood. The quality of communication
lines should be considered.

2

3.4.7 Describe suitable methods to ensure data security. Students should understand the concept of data encryption but do not
need to give algorithmic details. They must understand the need for,
and use of, passwords, physical security and different levels of
access (permissions) for different users.

2

Topic 3—Computing system fundamentals (continued)

© International Baccalaureate Organization 2004 28

Assessment statement Teaching note Obj

3.4.8 3

3.4.9 3

3.1.10

Discuss the need for speed in data transmission, and how speed can
be enhanced.

Discuss networking applications and the implications of networking
for organizations, including internal communications, electronic
mail, e-commerce, conferencing and distributed processing.

Outline the functions of a web browser and search engine including
displaying an HTML page, following hyperlinks and searching on
key words.

Students must know that documents and graphics files can be sent in
different formats and the format affects the speed of transmission.
Common formats such as JPEG and BMP should be known. The
principles of data compression should be considered but details of
methods are not required.

The use of LANs, public and private WANs and the Internet should
be considered.

Specific names of browsers and search engines are not required. 2

3.5—Data representation 6 hrs

Assessment statement Teaching note Obj

3.5.1 2

3.5.2

Students must understand the relationship between number of digits
and number of patterns available (2n, for example: 4-bit colour
representation allows 16 colours; a 32-bit address bus can address
4GB RAM). The different features of ASCII and Unicode should be
known but students are not expected to know the specific
representations of characters.

Link with 3.4.8 and 3.4.9. 2

3.5.3 2

3.5.4

Outline the use of binary to represent data.

Outline the need for standard formats for storing documents and
files.

Express numbers in the bases: decimal, binary and hexadecimal.

Convert integers between the bases specified in 3.5.3 (maximum 8
bits).

2

Topic 3—Computing system fundamentals (continued)

© International Baccalaureate Organization 2004 29

 Assessment statement Teaching note Obj

3.5.5 Apply binary notation to represent integers, both positive and
negative, using the method-of-two’s complement.

 2

3.5.6 Define analogue data and digital data. 1

3.5.7 Outline the need for the interconversion of data between analogue
and digital formats for computer processing.

Students need to understand the need for conversion between data
for processing, for example, sensors and modems.

2

3.5.8 Discuss two applications that require conversion of data between
analogue and digital formats including temperature sensing.

Teachers are free to choose the second application. Other software
examples include: speech recognition, light detection, image
processing, OCR software.

3

3.6—Errors 2 hrs
 Assessment statement Teaching note Obj

3.6.1 Describe the following causes of errors with reference to an
application in each case: data entry, accidental, deliberate, software
and hardware.

 2

3.6.2 Outline methods of detection and prevention for each of the errors in
3.6.1.

Verification and validation should be understood. Check digits and
hash totals should be explained. The use of modulo operators (mod,
div) in constructing check digits should be understood.

2

3.6.3 Describe methods of recovery from an error. Re-input, re-transmission and restoring from backups should be
considered. Error-correcting algorithms are not required.

2

Topic 3—Computing system fundamentals (continued)

© International Baccalaureate Organization 2004 30

3.7—Utility software 2 hrs
 Assessment statement Teaching note Obj

3.7.1 Outline the main function(s) of the following software utilities: data
compressors, virus software, file managers, defragmentation
software.

The required file manager functions are: copy, delete, format, find,
create folder/directory, archive, print, back-up, rename and restore.
The fact that files are not stored contiguously only needs to be dealt
with in outline, in order to understand why defragmentation software
is required. Technical details are not required.

2

3.7.2 Discuss the need for each of the utilities in 3.7.1. 3

Additional HL material
Topic 4—Computer mathematics and logic
Computer science is not a mathematics course. However, the following topics allow students to understand the basic principles of computer architecture, to
understand the fundamental causes of many common errors, to design simple circuits, and to construct some common algorithms requiring mathematical
techniques.

© International Baccalaureate Organization 2004 31

4.1—Number systems and representations 6 hrs
 Assessment statement Teaching note Obj

4.1.1 Calculate in the bases specified in 3.5.3. For binary and hexadecimal calculations, only addition is required. 3

4.1.2 State the mantissa and exponent of a binary number in floating-point
representation. Relate this to scientific notation in decimal.

For negative binary numbers in integer and real formats, only the
method-of-two’s complement is required.

1

4.1.3 Apply binary notation to represent real numbers. Both fixed-point and floating-point representations are required.
Students should be able to calculate the range of normalized floating-
point numbers given a specific representation. Issues such as the
need for normalization and the loss of precision should be
understood.

2

4.1.4 Discuss the advantages and disadvantages of integer and floating-
point representations.

 3

4.1.5 Define truncation error, underflow error and overflow error. 1

4.1.6 Outline three situations, with each one providing an example of
when and where one of the errors in 4.1.5 can occur. Each situation
should show a different error, that is all three errors should be
described.

 2

Topic 4—Computer mathematics and logic

© International Baccalaureate Organization 2004 32

4.2—Boolean logic 5hrs
 Assessment statement Teaching note Obj

4.2.1 Define the Boolean operators and, or, not, nand, nor and xor, by
drawing the appropriate truth table.

 1

4.2.2 Construct Boolean expressions using the operators in 4.2.1.

For example, () ()A B C D⊕ ⋅ + .

This can be written in words as: (A xor not B) and (C nor D).

Operator Symbol

and •

or +

not (overbar)

xor ⊕

4

4.2.3 Calculate the values of a Boolean expression using truth tables. A maximum of three inputs will be expected. Include the use of truth
tables to determine whether two Boolean expressions are logically
equivalent.

3

4.2.4 Convert Boolean expressions into simpler forms. A maximum of three inputs will be expected. Conversions may be
done “algebraically” (using identities such as 1 1x + = and
De Morgan’s laws) or by using Karnaugh maps, Venn diagrams or
any other appropriate method.

2

4.2.5 Construct a simple logic circuit that corresponds to a given Boolean
expression by using standard logic gates.

 4

Topic 4—Computer mathematics and logic (continued)

© International Baccalaureate Organization 2004 33

 Assessment statement Teaching note Obj

4.2.6 Construct a Boolean expression that corresponds to a given logic
circuit.

 4

4.2.7 Explain the function of a given circuit. 3

Topic 5—Abstract data structures and algorithms
The Java programming language provides some standard data structures (such as arrays or files) that are adequate for many standard problems. Other
problems require further data types to represent more complex structures, improve algorithm efficiency, or provide for more sophisticated memory
management.

Although Java implements many different types of container class for the convenience of programmers, students are expected to be able to develop their own
ADTs from first principles.

Higher level students must demonstrate mastery of some of these techniques in the program dossier and should be able to use any of these techniques during
the examination. This topic extends several aspects of topics 1 and 2.

© International Baccalaureate Organization 2004 34

5.1—Fundamentals 3 hrs
 Assessment statement Teaching note Obj

5.1.1 Define operator (unary and binary), identifier, operand, actual
parameter (argument), formal parameter, infix notation, postfix
notation and prefix notation.

 1

5.1.2 Define stack, queue and binary tree. 1

5.1.3 Discuss the features and appropriate usage of stacks including:
parameter storage, interrupt handling, evaluation of arithmetic
expressions and storage of subprogram return addresses.

 3

5.1.4 Discuss the features and appropriate usage of queues including:
keyboard queues, print queues and customer queue simulations.

 3

5.1.5 Discuss the features and appropriate usage of binary trees including:
storing search keys, decision trees and file systems.

 3

Topic 5—Abstract data structures and algorithms (continued)

© International Baccalaureate Organization 2004 35

5.2—Static data structures 8 hrs
Arrays are covered at length in the common core. This subtopic should be considered as an extension.

 Assessment statement Teaching note Obj

5.2.1 Trace algorithms that perform a quicksort on linear arrays. 2

5.2.2 Construct algorithms that perform a quicksort on linear arrays. 4

5.2.3 Construct a hash table including the generation of addresses using
modulo arithmetic and the handling of clashes by locating next free
space.

Students will be given a hash algorithm and a set of keys or records
that will be allocated memory locations by employing the algorithm.

4

5.2.4 Trace algorithms that implement a stack in an array. 2

5.2.5 Construct algorithms that implement a stack in an array. This includes: to initialize a stack, to test for an empty or a full stack,
to push a data item, to pop a data item and to display the top data
item. All operations must protect against overflow and underflow.

4

5.2.6 Trace algorithms that implement a queue in an array. 2

5.2.7 Construct algorithms that implement a queue in an array. This includes: to initialize a queue, to test for an empty or a full
queue, to add a data item to the rear of a queue (enqueue), to remove
a data item from the front of a queue (dequeue) and to display the
data item at the front of a queue. Algorithms must include linear and
circular implementation. All operations must protect against
overflow and underflow.

4

Topic 5—Abstract data structures and algorithms (continued)

© International Baccalaureate Organization 2004 36

5.3—Dynamic data structures 14 hrs
 Assessment statement Teaching note Obj

5.3.1 Define object reference. 1

5.3.2 Construct algorithms that use reference mechanisms. 4

5.3.3 Discuss the features and appropriate usage of single, double and
circular linked lists.

 3

5.3.4 Outline and illustrate how links operate logically. 2

5.3.5 Trace algorithms to implement linked lists. 2

5.3.6 Construct algorithms to implement linked lists. This includes: initialize, add objects, delete objects, find tail object,
perform linear search and insert objects into a list. All operations
must protect against null pointer exceptions.

4

5.3.7 Trace algorithms that implement a dynamic stack using references. 2

5.3.8 Construct algorithms that implement a dynamic stack using
references.

Students must recognize the difference between this and the static
representation of stacks. See notes in 5.2.5.

4

5.3.9 Trace algorithms that implement a dynamic queue using references. 2

5.3.10 Construct algorithms that implement a dynamic queue using
references.

Students must recognize the difference between this and the static
representation of a queue. See also notes in 5.2.7.

4

5.3.11 Define parent, left-child, right-child and subtree. 1

5.3.12 Trace algorithms to implement binary trees. 2

Topic 5—Abstract data structures and algorithms (continued)

© International Baccalaureate Organization 2004 37

 Assessment statement Teaching note Obj

5.3.13 Construct algorithms to implement binary trees. This includes: initialize, add objects, traverse (pre-order, in-order and
post-order). All tree traversals must be implemented recursively. See
5.5.

4

5.3.14 Outline and illustrate the logical representation of dynamic data
structures.

 2

5.4—Objects in problem solutions 6 hrs
The scope of the topic is limited to features exemplified in Java. (See appendix 2.)

 Assessment statement Teaching note Obj

5.4.1 Outline the features of an object. This should be limited to the following definition.

An object is a combination of data and the operations that can be
performed in association with that data. Each data part of an object is
referred to as a data member while the operations can be referred to
as methods. The current state of an object is stored in its data
members and that state should only be changed or accessed through
the methods. Common categories of operations include: the
construction of objects; operations that either set (mutator methods)
or return (accessor methods) the data members; operations unique to
the data type; and operations used internally by the object.

2

5.4.2 Explain the basic features and advantages of encapsulation. Encapsulation is the combination of data and the operations that act
on the data into a single “program unit” called an object. The
advantages are that it allows for information and data hiding.

3

5.4.3 Explain the basic features and advantages of information and data
hiding.

Once encapsulated into an object both the data members and the
details of the implementation of the member functions can be hidden.
This allows the object to be used at an abstract level.

3

Topic 5—Abstract data structures and algorithms (continued)

© International Baccalaureate Organization 2004 38

 Assessment statement Teaching note Obj

5.4.4 Explain the basic features and advantages of polymorphism. Polymorphism describes the situation in which the same operation
can be applied to different objects, with each object behaving
appropriately. The concepts of templates, virtual member functions
and operator overloading are not required. Polymorphism allows
objects to be used intuitively and it simplifies coding by making it
generic.

3

5.4.5 Explain the basic features and advantages of inheritance. Inheritance allows one object to be derived from another. The
derived object has all the data members and member functions of the
original object and any additional data member or member functions
that are defined within it. Even previously defined functionality may
be redefined with the appropriate functionality applied to the
particular object that invokes it. In Java, all classes are subclasses of
the object class. When functions (including constructors) are
redefined in a derived object, they completely override the original
function. Inheritance in Java is limited to one object being derived
from another (one level of inheritance). Multiple inheritance is not
supported by the Java language.

3

5.4.6 Trace an algorithm that includes objects. This will include recording the behaviour and state of the objects. 2

5.5—Recursion 6 hrs
 Assessment statement Teaching note Obj

5.5.1 Define recursion. 1

5.5.2 Discuss the advantages and disadvantages of recursion. Students must understand that for some applications a recursive
procedure is short and elegant, and that a recursive solution is ideally
suited for some algorithms. However, recursion is not suitable for
most algorithms as non-recursive ones are more efficient.

3

Topic 5—Abstract data structures and algorithms (continued)

© International Baccalaureate Organization 2004 39

 Assessment statement Teaching note Obj

5.5.3 Trace recursive algorithms. All steps and calls must be shown clearly. Students may need to
draw a tree.

2

5.5.4 Construct recursive algorithms. This is limited to an algorithm that returns no more than one result
and contains either one or two recursive calls to itself.

4

5.5.5 Implement the following constructs: self-referential classes and
recursion.

 3

5.6—Algorithm evaluation 4 hrs
 Assessment statement Teaching note Obj

5.6.1 State the efficiency of the following algorithms in BigO notation: a
linear search is O(n), a bubble sort is O(n2), a quicksort is O(n log n),
a binary search is O(log n) and a selection sort is O(n2), given a
randomly distributed data set.

BigO notation is used to classify algorithm performance (speed). A
sequential search is O(n), meaning that the time to search an array is
proportional to the size of the array. However, a bubble sort requires
nested loops and is therefore O(n2), so its time requirements are
proportional to the square of the size of the list. Students should be
aware that the efficiency of a given algorithm may depend on the
distribution of the data, for example, a quicksort may deteriorate to
O(n2) in the worst case.

1

5.6.2 Analyse the efficiency of algorithms (those in 5.6.1 and those of
similar complexity), in terms of BigO notation and in terms of the
storage requirements.

When students are presented with an algorithm that they have not
encountered they must be able to write the BigO notation for the
efficiency of that algorithm.

3

Topic 5—Abstract data structures and algorithms (continued)

© International Baccalaureate Organization 2004 40

 Assessment statement Teaching note Obj

5.6.3 Outline how data structures in this syllabus can be organized to suit
the requirements of applications.

Students should consider the needs of different applications for data
types and data structures. For example, stacks might be used to track
changes to a word processing document whereas a queue might store
data items being entered at the keyboard for subsequent processing
in the order in which they arrived. Ordered binary trees and hash
tables are frequently used to store key fields used for quick retrieval
of items from an unordered data file.

2

5.6.4 Evaluate algorithms that use any of the data structures in this
syllabus.

The algorithms may be standard algorithms mentioned in the
syllabus, or algorithms of equivalent complexity that the students
have not seen before.

3

Topic 6—Further system fundamentals
Actual computer system performance is affected by all the components of the system. Students need to know the functions of the individual components and
the methods used in their interactions. This topic extends topic 3.

6.1—Processor configuration 2 hrs

© International Baccalaureate Organization 2004 41

 Assessment statement Teaching note Obj

6.1.1 Describe the functions of the following processor components:
accumulator, instruction register and program counter.

Further details (or registers) are not required. 2

6.1.2 Explain the role of the above components in the execution of single
instructions in the machine instruction cycle.

 3

6.1.3 Describe the function of an interrupt register. 2

6.1.4 Describe how buses link the processor, the random access memory,
the read-only memory and cache.

 2

6.2—Magnetic disk storage 1 hr
 Assessment statement Teaching note Obj

6.2.1 Outline storage details with reference to blocking, sectors, cylinders
and heads.

 2

6.2.2 Describe access time in terms of latency (rotational delay), seek time
and transfer time.

 2

Topic 6—Further system fundamentals (continued)

© International Baccalaureate Organization 2004 42

6.3—Operating systems and utilities 2 hrs
 Assessment statement Teaching note Obj

6.3.1 Define operating system. Knowledge of any specific operating system is not required. 1

6.3.2 Explain the functions of operating systems. Students need to be aware that an operating system is a collection of
programs that cover the following tasks: input/output (I/O) control,
file maintenance, software/hardware interface, memory management,
user interface, software execution control, security. Virtual memory
must be included but knowledge of thrashing and paging is not
required. This extends 3.3.2.

3

6.3.3 Outline the functions of linker, loader and library manager. 2

6.4—Further network fundamentals 4 hrs
 Assessment statement Teaching note Obj

6.4.1 Outline the role of the computers used in the separate type of
networks: WAN, LAN and the Internet.

The roles of providers, servers and clients should be understood for
each of these networks. Students should be able to select the
appropriate type of network for a given situation. They must
understand the role of gateways.

2

6.4.2 Describe the features of communications needed for networking. Ethernet, public and private telephone lines, ISDN, ADSL, fibre
optic and wireless methods should all be familiar and students should
be able to select the most suitable method of communication in a
given situation, and to state the advantages of each method.
Technical details will not be required.

2

6.4.3 Describe packet switching. Students need to be aware that when a message is dissembled into
packets, the packets may take different paths and pass through
different nodes to arrive at the same destination, and that packets can
be discarded. Virtual circuits are not required.

2

Topic 6—Further system fundamentals (continued)

© International Baccalaureate Organization 2004 43

 Assessment statement Teaching note Obj

6.4.4 Outline the need for protocols in packet switching. Students do not need to know technical details of TCP, IP, OSI, but
must understand that protocols include essential information that
allows packets to be reassembled at their destination according to the
requirements of the receiving computer.

2

6.4.5 Explain the need for network security and describe how this can be
achieved.

Emphasize the importance of protection within a LAN by giving
layered access (for example, via permissions on certain areas) to
different users, and marking files as read only. The need for a
firewall to prevent intrusion from outside should be clear.

3

6.5—Computer/peripheral communication 6 hrs
 Assessment statement Teaching note Obj

6.5.1 Define port and handshaking. 1

6.5.2 Define direct memory access (DMA) and buffer. 1

6.5.3 Define interrupt and polling. 1

6.5.4 Explain how peripheral devices are controlled with reference to the
printer, modem and disk drive.

This must include the use of buffers (including double buffering),
interrupts and interrupt priorities, polling, direct memory access
(DMA) and handshaking in these devices.

3

6.5.5 Compare the features of DMA, interrupt systems and polling
systems.

Students must cover an event or external device interrupt as well as a
polling system. Knowledge of specific interrupt codes is not required.

3

6.5.6 Compare serial transmission with parallel transmission. 3

Topic 7—File organization
A variety of file structures are commonly used in computer systems. Students must be familiar with several of the most common structures. This topic extends
topic 1.

Current literature often appears confusing as the terminology relating to file structure and methods of accessing files is used inconsistently. The following
table clarifies the specific terminology that is used in this syllabus, and that will be used in examinations.

File structure name Structure details Access method (searching)

Sequential file Ordered or unordered records Sequential access.

Partially-indexed file Ordered records Sequential access to index, followed by direct access to the first record in the
group, then sequential access to find the desired record.

Fully-indexed file Unordered records Sequential access to the index, followed by direct access to the data file.

Direct access file Unordered or ordered records A calculation provides the address (location) of a record, followed by direct
access to the record.

7.1—File organization 10 hrs

© International Baccalaureate Organization 2004 44

 Assessment statement Teaching note Obj

7.1.1 Define the term “key field”. 1

7.1.2 Outline sequential file organization on unordered records and how
records can be retrieved by using sequential access via the key field.

 2

7.1.3 Outline sequential file organization on ordered records and how
records can be retrieved by using sequential access via the key field.

 2

7.1.4 Outline partially-indexed sequential file organization. A partially-indexed sequential file has ordered records, with a
separate but partial index. Students should be able to describe how
records can be retrieved via access to the index, followed by direct
access to the first record in a group, followed by sequential access to
locate the desired record.

2

Topic 7—File organization

© International Baccalaureate Organization 2004 45

 Assessment statement Teaching note Obj

7.1.5 Outline fully-indexed file organization. A fully-indexed file has unordered records, with a separate and
complete index. Students should be able to describe how records can
be retrieved via access to the index, followed by direct access in the
data file. Recall of multi level indexes is not required.

2

7.1.6 Outline direct access file organization. A direct access file can have unordered records. Students should be
able to outline how records can be retrieved via a calculation
followed by direct access.

2

7.1.7 Outline the need for fixed- and variable-length fields and records,
and how they are related to direct and sequential access methods.

 2

7.1.8 Describe the use of hash algorithms to save and retrieve records in a
direct access file.

Students should understand the use of modulo operators (mod, div)
in the construction of a hash function. See also 5.2.3.

2

7.1.9 Compare the speed of access and storage requirements for the types
of files mentioned in 7.1.2–7.1.8.

This should also include storage media (disk, tape). Access speeds
should be expressed in descriptions, calculations of iterations and
BigO notation.

3

7.1.10 Explain how the logical organization of data differs from its physical
organization.

For example, in a fully-indexed sequential file, records can be
retrieved in alphabetical order by using the index, even though they
are not stored physically in that order.

3

7.1.11 Outline the need for external sorts. The sorting of files that are too large for the primary memory of a
computer requires techniques based on a combination of sorting and
merging. Recall of algorithms for merge sorts is not required.

2

7.1.12 Demonstrate an understanding of and use the different types of data
streams identified in appendix 2.

 3

46 © International Baccalaureate Organization 2004

THE CASE STUDY

Problem solving in computer science requires a clear description of a scenario (or context) that reflects
a “real-life” problem, together with definitions of particular variables. Examinations naturally impose
significant time constraints, especially when students have to read large quantities of text; nevertheless
rather lengthy descriptions will be inevitable for some questions. Furthermore, the scenarios presented
within examinations may be situated outside the experience of many students. This may be due to the
age of the students, but also to their cultural and technological circumstances. The use of a case study
should help to overcome these inequalities, while, at the same time, providing other assessment
opportunities. Since the case study will be issued well in advance of the examination, it will allow
students and teachers to familiarize themselves with the particular scenario and the language contained
within it. Teachers will be able to collect enrichment, resource and background materials relevant to
the scenario. They may wish to prepare their students in other ways, for example, by organizing visits
or visiting speakers.

Case study aims
The aims of the case study are to:

• facilitate the study of a real scenario or situation involving a problem that can be solved using
computer systems and that can be described fully

• exemplify the social significance and implications of computer systems

• capitalize on relatively current situations, thereby taking advantage of new initiatives or
developments arising after the guide was composed

• provide a real-life situation on which to base examination questions from all sections of the
syllabus

• try to reduce the variation in performance that might be created by a limited understanding of
material due to the native language of the text being different from that of the student.

Format
The case study will consist of a booklet of several pages containing a variety of information. The
content is likely to be mainly textual but may also contain information in the form of diagrams,
flowcharts, algorithms, pictures/photographs, tables or graphs.

Procedures
The case study is constructed by the Diploma Programme computer science senior examiners every
two years. The same case study will be used for both standard level and higher level examinations.
The relevant number of case study booklets will be sent to schools as far in advance of the
examination as possible. The same case study will be used for both examination sessions (May and
November) for two years. “Clean” copies of the case study will accompany the examination papers.

THE CASE STUDY

© International Baccalaureate Organization 2004 47

Content
The case study will contain material relevant to all sections of the syllabus, both standard and higher
level. Standard level students will not be asked questions based on areas of the case study that relate to
higher level topics.

The examination
For both standard level and higher level, one question in paper 2 will require an understanding of the
information in the case study at the appropriate depth. Students will be free to consult the case study
during the examination. This structured question may also test an understanding of other topics in the
syllabus and other questions in paper 2 may also refer to information in the case study but will not test
the case study content in any depth.

48 © International Baccalaureate Organization 2004

ASSESSMENT OUTLINE

Computer science standard level
First examinations 2006

COMPONENT WEIGHTING
OBJECTIVES
(Approximate

weighting)
DURATION DETAILS AND

MARK TOTALS

 1+2 3+4 Sections Total

External
Assessment

65% 3 hrs

Paper 1 32.5% 19% 13.5% 1 hr 30 mins

Section A 14% 11.5% 2.5% 40 mins
approx.

 Several compulsory
short-answer
questions (30 marks)

Section B 18.5% 7.5% 11% 50 mins
approx.

 Four compulsory
structured questions
(40 marks)

32.5% 12% 20.5% 1 hr 30 mins Three compulsory
questions:

Paper 2

18.5% 5% 13.5% 50 mins
approx.

Two compulsory
extended-response
questions including
the construction of an
algorithm (40 marks)

 14% 7% 7% 40 mins
approx.

One compulsory
structured question
based on the case
study (30 marks)

Internal
Assessment

35%

Program
Dossier

35% 20% 15% 25 hrs’ teacher contact time
plus further computer access
time

One in-depth project
addressing a single
problem that enables
the student to
demonstrate mastery
of the required aspects
(50 marks)

ASSESSMENT OUTLINE

© International Baccalaureate Organization 2004 49

Computer science higher level
First examinations 2006

COMPONENT WEIGHTING
OBJECTIVES
(Approximate

weighting)
DURATION DETAILS AND

MARK TOTALS

 1+2 3+4 Sections Total

External
Assessment

65% 4hrs 30 mins

Paper 1 32.5% 19.5% 13% 2 hrs 15 mins

Section A 13% 10.5% 2.5% 1 hr approx. Several compulsory
short-answer
questions (40 marks)

Section B 19.5% 9% 10.5% 1 hr 15 mins
approx.

 Six compulsory
structured questions
(60 marks)

32.5% 13% 19.5% 2 hrs 15 mins Four compulsory
questions:

Paper 2

19.5% 4% 15.5% 1 hr 15 mins
approx.

Three compulsory
extended-response
questions including
the construction of an
algorithm (60 marks)

 13% 9% 4% 1 hr approx.

One compulsory
structured question
based on the case
study (40 marks)

Internal
Assessment

35%

Program
Dossier

35% 20% 15% 35 hrs’ teacher contact time
plus further computer
access time

One in-depth project
containing a single
problem that enables
the student to
demonstrate mastery
of the required aspects
(50 marks)

50 © International Baccalaureate Organization 2004

ASSESSMENT DETAILS

External assessment
The computer science assessment model is designed to measure student performance against the four
assessment objectives. Assessment is carried out by a combination of external examinations
conducted at the end of the programme of study, and internal assessment, carried out by teachers.
These two key assessment structures are respectively weighted at 65% and 35%.

Standard level

External assessment 65%
Paper 1 (70 marks) 32.5%

• Paper 1 is an examination paper of 1 hour 30 minutes consisting of two compulsory sections.
The paper is designed to test each student’s overall knowledge of the syllabus content.

• Section A (40 minutes approximately) consists of several compulsory short-answer questions
testing mainly objectives 1 and 2. The maximum mark is 30.

• Section B (50 minutes approximately) consists of four compulsory structured questions testing
mainly objectives 3 and 4. The maximum mark for each question is 10.

Paper 2 (70 marks) 32.5%

• Paper 2 is an examination paper of 1 hour 30 minutes consisting of three compulsory
questions.

• The first two questions (50 minutes approximately) are extended-response questions, in several
parts. They require students to construct algorithms based on appropriate scenarios. The
maximum mark for each question is 20.

• The third question (40 minutes approximately) is structured, in several parts, and based on a
case study. Further details about the case study can be found in this guide. The maximum mark
is 30.

Calculators
The use of calculators will not be permitted in any computer science examinations.

ASSESSMENT DETAILS

© International Baccalaureate Organization 2004 51

Higher level

External assessment 65%
Paper 1 (100 marks) 32.5%

• Paper 1 is an examination paper of 2 hours 15 minutes consisting of two compulsory sections.
The paper is designed to test each student’s overall knowledge of the syllabus content.

• Section A (1 hour approximately) consists of several compulsory short-answer questions
testing mainly objectives 1 and 2. Several questions are common to SL paper 1 section A (20
marks approximately). The remaining questions examine HL topics. The maximum mark is 40.

• Section B (1 hour 15 minutes approximately) consists of six compulsory structured questions
testing mainly objectives 3 and 4. The maximum mark for each question is 10.

Paper 2 (100 marks) 32.5%
• Paper 2 is an examination paper of 2 hours 15 minutes consisting of four compulsory

questions.

• The first three questions (1 hour 15 minutes approximately) are extended-response questions,
in several parts. They require students to construct algorithms based on appropriate scenarios.
The maximum mark for each question is 20.

• The fourth question (1 hour approximately) is structured, in several parts, and based on a case
study (common to SL). Further details about the case study can be found in this guide. The
maximum mark is 40.

Calculators
The use of calculators will not be permitted in any computer science examinations.

ASSESSMENT DETAILS

52 © International Baccalaureate Organization 2004

Internal assessment:
program dossier

(50 marks) 35%

The program dossier is an individual piece of work completed during the course. The dossier must
address a single problem that can be solved using computer systems and which has an identified end-
user. The analysis, design and production of the final system must be well documented.

The emphasis is on the use of a logical approach and analytical thinking from definition and
decomposition of the problem through to its solution by constructing appropriate classes implementing
algorithms and data structures in the Java programming language.

The program dossier is internally assessed by the teacher and externally moderated by the
IBO following procedures provided in the Vade Mecum.

Time allocation

Standard level
It is expected that approximately 25 hours’ teacher contact time will be devoted to the program
dossier, including guidance on format, presentation and content. Some of the time teaching the
syllabus content will also involve work connected with the program dossier, but this does not include
the time required by students to work on their own to develop and complete their dossiers.

Higher level
It is expected that approximately 35 hours’ teacher contact time will be devoted to the program
dossier, including guidance on format, presentation and content. Some of the time teaching the
syllabus content will also involve work connected with the program dossier, but this does not include
the time required by students to work on their own to develop and complete their dossiers.

Choice of problem
The role of the teacher is crucial in advising the student in their choice of problem. Overly ambitious
problems should be avoided as should overly simplistic ones.

Students are free to choose problems generated by themselves or their teacher, but the problem chosen
must have an identified end-user. Students may share the same problem to be solved or the same initial
scenario, but collaborative work is forbidden.

Teachers are expected to give educational guidance at each stage of the design process. In particular
the prototype should be fully explored by the teacher and student to ensure that the requirements of the
user can be met within the programming abilities of the student and within the time available. If this is
not the case then another problem should be chosen or a restricted solution should be offered to the
end-user.

The scope of mastery aspects available in the problem needs to be considered. The level of difficulty
of the problem should be consistent with the ability of the student.

ASSESSMENT DETAILS

© International Baccalaureate Organization 2004 53

Approach
The internal assessment criteria imply that the work on the dossier falls into four main stages:

A—Analysis
B—Detailed design
C—The program
D—Documentation.

Preferably students will complete these stages in the order given. However, with stages B and C it may
occasionally be necessary for students to return from C to B one or more times to refine their detailed
design in a “spiral” of design and development. This will also depend on the nature of the problem
(open or closed) and on the ability of the student. Teachers should not allow students to produce stages
A and B following development of the solution.

Teachers are advised to set deadlines for the ends of stages A, B, C and D so that students are helped
to achieve success.

Students are free to choose a design methodology (structured, top-down or object-oriented) that is
flexible and extensible. Therefore, it may be necessary for them to retain design documentation from
earlier stages to present as evidence in the final dossier in support of awards for criteria B1–B3.
Teachers may wish to design their own methods of collecting such design documentation (design logs,
portfolios containing CRC cards, UML style diagrams and so on). Examples will be provided with
teacher support material for this course.

When the student’s program is complete, the teacher should run it in the presence of the student to
confirm that it functions, and has produced the hard copy output submitted with the program dossier.

Automated development systems
Some programming systems, such as visual IDEs, provide interactive development environments with
a wide range of extra facilities, such as visual design, object manipulation, and automatic code
generation. However, the use of these is beyond the scope of this syllabus.

Within the program dossier such facilities may be used by the student, but must not be used for
mastery tasks. For example, SL students would be expected to write their own algorithms for sorting
an array, rather than simply executing a library function that sorts the array. Similarly, HL students
would be expected to write their own algorithms that maintain a linked data structure, rather than
using a system library that already contains all the required algorithms.

Any program listing that includes code automatically generated by the development system must have
this code clearly identified and distinguishable from the code written by the student.

Teacher assessment
Teachers assess students’ performance by using level descriptors against the relevant criteria, which are
related to the objectives. The criteria and achievement levels must be applied to the work in the program
dossier regardless of the number of aspects in which mastery is demonstrated. After this a “mastery factor”
is applied. This factor depends on the number of different aspects in which mastery is demonstrated. (See
the section on mastery in this guide). The assessment of the program dossier is moderated externally.

Only the code designed and written by the student must be taken into account when applying the
assessment criteria, and awarding marks.

If teachers add comments to dossiers as well as marking them ready for moderation, this facilitates the
moderation process. In addition, if teachers write a report for each student that justifies the
achievement level awarded for each criterion, this also will facilitate the moderation process and make
the feedback forms from the moderator more focused.

ASSESSMENT DETAILS

54 © International Baccalaureate Organization 2004

Format of the dossier
All the student’s work must be submitted together as a single document. The work can be stapled, put
into a ring-binder or inserted into a folder. All information required for the program dossier must
appear as hard copy. Diskettes, CD-Roms, and so on must not be included within the program dossier
or sent to the moderator.

There must be a table of contents and all written documentation should be word processed, except where
it is felt necessary to include rough notes. Program runs and sample screens may be annotated by hand.

All the pages must be numbered. The numbering can be sequential (1, 2, 3, and so on) throughout the entire
program dossier or it can be done according to the items numbered in the following table. (For example, if
the design process is the third item, then these pages can be numbered 3–1, 3–2, 3–3, and so on.) This may
be easier, since each item can be numbered sequentially as it is completed. The page numbering can be
done by hand if the available computer systems do not permit automatic page numbering.

The number of pages associated with each item may vary according to the nature and complexity of
the problem being solved as well as its programmed solution. However, as a guide, an approximate
number of pages is given in the following table. This is included mainly to ensure that students include
the appropriate amount of material.

Items to be included in the program dossier
All of the items listed in the following table must be included in the program dossier.

Items to be included in the program dossier Suggested number of pages

Table of contents

Analysis of the problem 2–3

Criteria for success 1–2

Prototype solution Variable

Data structures 2–5

Algorithms 2–5

Modular organization 3–5

Usability 1

Handling errors 1–2

Code listing Variable (500–3,000 lines)

Annotated hard copy Variable

Evaluation of solutions 2

User documentation 6

Documentation of mastery aspects 2

Total Approx 60–100

ASSESSMENT DETAILS

© International Baccalaureate Organization 2004 55

Internal assessment criteria
Using the assessment criteria and descriptors
The method of assessment used by the IBO is criterion related. That is to say each student is assessed
against identified assessment criteria and not against other students.

• There are fourteen assessment criteria for the program dossier. For each assessment criterion,
achievement level descriptors are defined that concentrate on positive achievement, although for the
lower levels (1 = the lowest level of achievement) failure to achieve may be included in the description.

• The aim is to find, for each criterion, the descriptor that conveys most adequately the
achievement level attained by the student.

• Having scrutinized the work to be assessed, read the descriptors for each criterion, starting with
level 1, until you reach one that describes a level of achievement that the work being assessed
has not reached. The work is therefore best described by the preceding achievement level
descriptor and you should record this level.

• Use only whole numbers, not partial marks such as fractions and decimals. If a student does not
achieve a standard described by any of the descriptors, then 0 (zero) should be recorded.

• The highest descriptors do not imply faultless performance and teachers should not hesitate to
use the extremes, including zero, if they are appropriate descriptions of the work being assessed.

• Descriptors should not be considered as marks or percentages, although the descriptor levels are
ultimately added together to obtain a score out of 50. It should not be assumed that there are
other arithmetical relationships; for example, a level 4 performance is not necessarily twice as
good as a level 2 performance.

• A student who attains a particular level of achievement in relation to one criterion will not
necessarily attain similar levels of achievement in relation to the others. Do not assume that the
overall assessment of the students will produce any particular distribution of scores.

Stage A—Analysis
Criterion A1: Analysing the problem
The documentation should be completed first and contain a thorough discussion of the problem that is
being solved. This should concentrate on the problem and the goals that are being set, not on the
method of solution. A good analysis includes information such as sample data, information and
requests from the identified end-user, and possibly some background of how the problem has been
solved in the past. A systematic method is one that takes into account what input and output will
occur and what calculations and processes will be necessary to obtain the desired output.

0 The student has not reached a standard described by any of the descriptors given below. For
example, the student has simply described the programmed solution.

1 The student only states the problem to be solved or shows some evidence that relevant
information has been collected.

2 The student describes the problem to be solved.

3 The student describes the problem and provides evidence that information relating to the
problem has been collected.

4 The student provides evidence that a systematic method has been used in the analysis of the
problem.

ASSESSMENT DETAILS

56 © International Baccalaureate Organization 2004

This section of the program dossier would typically be two to three pages in length. It should include a
brief statement of the problem as seen by the end-user. A discussion of the problem from the end-user’s
point of view should take place, including the user’s needs, required input and required output. For
example, evidence could be sample data, interviews and so on, and could be placed in an appendix.

Criterion A2: Criteria for success
This section of the program dossier will clearly state the objectives/goals of the solution to the
problem. The expected behaviour of the solution should be clearly described and the limits under
which it can operate outlined.

0 The student has not reached a standard described by any of the descriptors given below.

1 The student states some objectives of the solution.

2 The student describes most of the objectives of the solution.

3 The student relates all of the objectives of the solution to the analysis of the problem.

4 The student relates all of the objectives of the solution to the analysis of the problem, and
outlines the limits under which the solution will operate.

This section of the program dossier would typically be one to two pages in length. Objectives should
include minimum performance and usability. These criteria for success will be referred to in
subsequent criteria, for example criterion C2 (Usability), C4 (Success of program); D2 (Evaluating
solutions) and D3 (Including user documentation).

The limits under which the solution will operate will vary. Some examples are:

• Time taken to return a research result from a data file
• The response of the program to invalid and extreme data input
• Limitations on the volume of data stored in the program
• Usability of user input screen
• The proper response of the program to user input.

Criterion A3: Prototype solution
The prototype solution must be preceded by an initial design for some of the main objectives that
were determined to be the criteria for success. A prototype of the solution should be created.

A prototype is: “The construction of a simple version of the solution that is used as part of the design
process to demonstrate how the system will woulps 0.48 -3abili548s-28-6.1(-0.4937.8(i)-0.4(ni)-5.8(m)7.8(h6a63 -40.4(ni)s.4(ate how the s7)-0.4(n6/TT5 1 388 0 TD
9s7consuT5 1 Tf
-13-6.1(-8.4(itations 0 TD
9(n6/TT5 68137 TD
lwn wil 55s part of the design)]TJ
lt fr)-).4(nds9.04 0.T5 6813e
f
.ions4255(h)-1.8(e 3(p)-1.8(e-1.8(e 6a63 -40.4(ni)s.4(ate ho.8(e 6a648 -3abili548s-28-6.1(-0.4a nd extre1n)009 Tc
0 Tw
(must)Tj
/TT7 1 tection)her0of the k
/Tu)r0of the krt swof the krt swof the krt swof the krt swof the krt swof the krt 4
0.043e.st)Tj
/TT7 1 tection)her0gto)]t swof -1.03 0 4he krt (ate h2(ples are:)]TJ
1.2951 -1.6995 TD
0.0006 Tc
0.0008 Tw
[(•)-68 extre1n)009 Tcxtre1n)sTc
0.00TJ
1 tection)her0of the k
/Tu)r0of thTw
[(A protot)5.8(ype i)5.8(s)2.4(: “The 4 krt swof tt6:.7003 Tm
0.00stn))4.8(h)-2.5(e criteria for success.)]TJ6, C4 (Success of prniate how the a f1r7.7()-5.40

ASSESSMENT DETAILS

© International Baccalaureate Organization 2004 57

The prototype need not be functional, it could be constructed using a number of tools such as: Visual
Basic, PowerPoint, Mac Paint, Corel Draw for a simple Java program. The intent is to show the user
how the system is expected to operate, what inputs are required and what outputs will be produced. A
number of screenshots will be required for the user to be able to evaluate the solution properly. The
prototype, at its simplest, could be a series of clear, computer-generated drawings, a hierarchical
outline of features in text mode, or a series of screenshots.
Documentation of user feedback could be, for example, a report of the user’s comments on the prototype.

Stage B—Detailed design
The ordering of the criteria B1–B3 does not imply that this is the sequence in which students should
develop or document their designs. This will vary according to the methodology adopted.

Criterion B1: Data structures
Students should choose data structures, at the design stage, that fully support the data-storage
requirements of the problem, and that allow clear, efficient algorithms to be written. The data
structures must fully support the objectives of the solution (criterion A2). The classes chosen should
be logical in that the data is sensible for the objects in question and the methods are appropriate for the
data given. This section of the program dossier could include class definitions, file structures, abstract
data types (particularly at higher level) and some consideration of alternatives.

0 The student has not reached a standard described by any of the descriptors given below.

1 The student has outlined some of the data structures/types to be used in the solution.

2 The student has described some of the data structures/types to be used, and provided sample data.

3 The student has discussed all of the data structures/types to be used, and provided sample data.

4 The student has discussed and clearly illustrated all of the data structures/types to be used to
solve the problem, and provided sample data for all of them.

This section would typically be two to five pages in length.
Data structures and data members that are to be used in the programmed solution should be discussed
here. Sample data, sketches/illustrations, including discussion of the way data objects will be changed
during program execution should be demonstrated to achieve a level 4 in criterion B1.

Criterion B2: Algorithms
Students should choose algorithms, at the design stage, that fully support the processes needed to
achieve the objectives of the solution (criterion A2), and provide sufficient support for the required
data structures. The classes chosen should be logical in that the methods are appropriate for the data
given. Students must include parameters, return values, and descriptions of pre- and post-conditions.

0 The student has not reached a standard described by any of the descriptors given below.

1 The student has outlined some of the algorithms to be used in the solution.

2 The student has described most of the algorithms to be used, with details of parameters and
return values.

3 The student has discussed all of the algorithms to be used, with details of parameters, return
values, pre-conditions and post-conditions.

4 The algorithms discussed are sufficiently logical, detailed, and well documented to be used
to create the solution in Java.

ASSESSMENT DETAILS

58 © International Baccalaureate Organization 2004

This section would typically be two to five pages in length.

This can be a list or outline of all the algorithms, presented as text, possibly in outline format.
Standard algorithms (such as search or sort) can simply be named (with parameters), but non-standard
algorithms must be described in more detail.

Criterion B3: Modular organization
Students should choose modules, at the design stage, that incorporate the data structures and methods
required for the solution (criteria B1 and B2) in a logical way. The data structures must fully support the
objectives of the solution (criterion A2). Students must present this organization in a structured way that
clearly shows connections between modules (hierarchical decomposition or class dependencies). The
connections between modules, algorithms and data structures must also be presented.

0 The student has not reached a standard described by any of the descriptors given below.

1 The student has outlined some of the modules to be used in the solution.

2 The student has described most of the modules to be used, showing connections between
them.

3 The student has described all of the modules to be used, and has shown the connections to
data structures and methods.

4 The modules discussed are sufficiently logical, detailed and well documented to be used to
create the solution in Java.

This section would typically be three to five pages in length.

A variety of presentations are possible here. Some possibilities are:

• a top-down hierarchical decomposition chart containing the names of modules, showing
connections between modules and showing details of which data structures and methods are
connected with (or part of) which modules

• a text outline showing hierarchical decomposition (equivalent to above)

• a hard copy of CRC cards showing dependencies between collaborating classes, with details of
which data structures and methods are connected with (or part of) which classes.

The design is assessed independently from the programming stage (stage C). The design should be
complete, logical and usable, but the student may deviate from it or expand it during stage C, without
penalty.

ASSESSMENT DETAILS

© International Baccalaureate Organization 2004 59

Stage C—The program
Program listings must contain all the code written by students and, if a program listing displays code
that was automatically generated by the development system or copied from another source, then this
code must be clearly identified and distinguishable from that code written by the students. Only the
code designed and written by students must be taken into account when applying the assessment
criteria.

Criterion C1: Using good programming style
Good programming style can be demonstrated by program listings that are easily readable, even by a
programmer who has never used the program. These would include small and clearly structured Java
methods, sufficient and appropriate comments, meaningful identifier names and a consistent
indentation scheme.

0 The student has not reached a standard described by any of the descriptors given below.

1 The program listing demonstrates some attention to good programming style.

2 The program listing mostly demonstrates attention to good programming style.

3 All parts of the program listing demonstrate considerable attention to good programming style.

A typical program should be approximately 1,000–3,000 (HL) or 500–2,000 (SL) lines of code in
length.

Comments should be included to describe the purpose and parameters of each method, and also when
code is difficult to understand.

The program should demonstrate the use of good programming techniques. It should include:

• an identification header indicating the program name
• author, date, school
• computer used, IDE used, purpose.

The program should possess good internal documentation, including:

• constant, type and variable declarations that should have explanatory comments
• identifiers with meaningful names
• objects that are clearly separated and have comments for their parameters
• suitable indentation that illustrates various programming constructs.

Generally, achievement level 2 will be appropriate where two or more of these have been
demonstrated. Then, achievement level 3 will be appropriate for three or more being demonstrated.

ASSESSMENT DETAILS

60 © International Baccalaureate Organization 2004

Criterion C2: Usability
Students should pay attention to issues of usability during the design stage. To be given credit
students must include features that make the program more user-friendly, such as helpful menus, help
instructions, useful guidance to the user during the execution of the program.

The features should go beyond the basic requirements needed to operate the program.

This criterion does not refer to internal error checking.

0 The student has not reached a standard described by any of the descriptors given below.

1 The student documents some user-friendly features within the program.

2 The student fully documents the user-friendly features of the program.

3 The student fully documents the user-friendly features of the program, and the program meets
the usability objectives in criterion A2.

This section would typically be no more than one page.

Separate output is not required for this section. However, a usability section should be present that
summarizes the features, making reference to the annotated sample runs and the program listing.
Features could be annotated, commented or highlighted in those sections and a simple table presented
here.

The teacher should run the program with the student before awarding achievement levels for this
criterion.

Criterion C3: Handling errors
This refers to detecting and rejecting erroneous data input from the user, and preventing common run-
time errors caused by calculations and data-file errors. Students are not expected to detect or correct
intermittent or fatal hardware errors such as paper-out signals from the printer or damaged disk drives,
or to prevent data-loss during a power outage.

0 The student has not reached a standard described by any of the descriptors given below.

1 The student includes documentation that shows a few error-handling facilities in the program,
or documents only one type of input or output.

2 The student includes documentation that shows many error-handling facilities in the program,
and documents more than one type of input or output.

3 The student fully documents the error-handling of each input and output method within the
program.

This section would typically be one to two pages in length.

For this criterion, students must attempt to trap as many errors as possible. The documentation in the
dossier can take a variety of forms.

For example, students could highlight relevant comments within the program listing or they could
produce a table with two columns, one that identifies any error possibilities, and one that shows the
steps taken to trap the errors. It is not expected that extra output is produced for this section.

ASSESSMENT DETAILS

© International Baccalaureate Organization 2004 61

Criterion C4: Success of the program
Evidence here refers to hard copy output in criterion D1.

0 The student has not reached a standard described by any of the descriptors given below.

1 The student includes evidence that the program functions partially. The student successfully
achieved some of the objectives from criterion A2.

2 The student includes evidence that the program functions well. The student successfully
achieved most of the objectives from criterion A2.

3 The student includes evidence that the program functions well. The student successfully
achieved all of the objectives from criterion A2.

The teacher should run the program with the student to confirm that the program functions, and that it
produces the hard copy output submitted with the program dossier.

Stage D—Documentation

Criterion D1: Including an annotated hard copy of the test output
The hard copy of test output should demonstrate that the program fulfills the criteria for success in
criterion A2. The output must be annotated (this may be done by hand). The teacher must confirm that
each student has actually completed the testing as claimed in the documentation. (See the Vade Mecum.)

0 The student has not reached a standard described by any of the descriptors given below.

1 The student includes an incomplete set of sample output.

2 The student includes an incomplete set of annotated sample output.

3 The student includes a mostly complete set of annotated sample output.

4 The student includes a complete set of annotated sample output, testing all the objectives in
criterion A2.

Hard copy output from one or more sample runs should be included to show that the different
branches of the program have been tested; testing one set of valid data will not be sufficient. The hard
copy submitted should demonstrate the program’s responses to inappropriate or erroneous data, as
well as to valid data. Thus the usefulness of the error-handling routines mentioned above should
become evident. While at least one complete test run must be included in the dossier, it is not
necessary that the hard copy reflect every key stroke of every test run. Cutting and pasting of
additional test runs should be done to illustrate the testing of different aspects of the program.
All test runs should be annotated in such a way that the student is stating what aspect of the program is
being tested. Sample output must never be altered by hand, erased or covered up.
Sample output can be “captured” and combined electronically with explanatory annotations into a single
document. However, it is forbidden to alter or reformat sample output in any fashion (except to add page
numbers or annotate in order to highlight user friendliness or error-handling facilities as discussed
above), especially if these alterations would give an unrealistic impression of the performance of the
program. Examples of such “abuse” include: lining up text that was not originally aligned; adding colour
or other special effects; changing incorrect numerical output; erasing evidence of errors.

ASSESSMENT DETAILS

62 © International Baccalaureate Organization 2004

Criterion D2: Evaluating solutions
The evaluation/conclusion section should be a critical analysis of the resulting solution. Effectiveness
should be discussed in relation to the original description of the problem and the criteria for success that
were stated in criterion A2. Efficiency may be discussed in general terms, for example BigO notation is
not required. Suggested improvements and possible extensions should be realistic, for example
suggestions should not include statements such as “the program would be a lot better if it incorporated
some artificial intelligence techniques such as speech recognition and natural language parsing”.

0 The student has not reached a standard described by any of the descriptors given below.

1 The student only outlines the solution.

2 The student outlines the solution and partly considers effectiveness, efficiency and possible
improvements.

3 The student discusses the effectiveness and efficiency of the solution and suggests alternative
processes and improvements.

4 The student suggests alternative approaches to the solution and the design process.

This section of the dossier would typically be two pages in length.

The evaluation/conclusion should include reflections on the effectiveness of the programmed solution
of the original problem. It should discuss answers to the following questions.

• Did it work?

• Did it address the criteria for success?

• Did it work for some data sets, but not others?

• Does the program in its current form have any limitations?

• What additional features could the program have?

• Was the initial design appropriate?

A thorough evaluation should also discuss possible future enhancements that could be made to the
program.

Criterion D3: Including user documentation
Good documentation usually includes both sample output and written instructions. It should be
sufficiently complete that it will allow anyone unfamiliar with the program to start using it effectively
after reading the instructions. The documentation must include some screenshots to illustrate program
operation. These screenshots should be separate from the hard copy in criterion D1. The user
documentation must be presented as hard copy.

0 The student has not reached a standard described by any of the descriptors given below.

1 The student includes some user documentation.

2 The student includes user documentation that contains clear instructions about running the
program.

3 The student includes user documentation that contains clear, illustrated instructions about
installing and running the program.

ASSESSMENT DETAILS

© International Baccalaureate Organization 2004 63

This section would typically be six pages in length.

If screenshots cannot be produced then a text version may be substituted.

Illustrated instructions about installing and running the program on another machine without using an
IDE should be provided for achievement level 3 in criterion D3. For example, compiled classes can be
copied to another computer and run.

Stage E—Holistic approach

Criterion E: Holistic approach to the dossier
The program dossier should be an ongoing process involving consultation between the student and
teacher. The student should be aware of the expectations of the teacher from the beginning of the
process and each achievement level awarded should be justified by a written comment from the
teacher at the time of marking. The examples given below for each criterion level are teacher-
orientated and each teacher should use discretion when judging the levels.

0 The student showed no commitment. For example, the student did not participate in class
discussions on dossier work, did not submit the required work in progress, and/or missed
many deadlines.

1 The student showed minimal commitment. For example, the student participated minimally in
class discussions on dossier work, kept to most deadlines, had some discussion initiated by the
teacher and/or did not exploit the available opportunities for the development or improvement
of the dossier.

2 The student showed good commitment. For example, the student participated in class
discussions on dossier work, initiated discussions with the teacher and/or the rest of the class
and/or became fully involved in the development of the dossier.

3 The student showed full commitment. For example, the student participated fully in class
discussions on dossier work, took initiatives both in discussion with the teacher and/or the rest
of the class and in subsequent work of a more independent nature and/or demonstrated a full
understanding of all the steps in the development of his/her dossier.

In order to obtain the highest achievement level for this criterion the student should have excelled in
areas such as those listed below. This list is not exhaustive and teachers are encouraged to add their
own expectations.

The student:

• actively participated at all stages of the development of the dossier

• demonstrated a full understanding of the concepts associated with his/her dossier

• demonstrated initiative

• demonstrated perseverance

• showed insight

• prepared well to meet deadlines set by the teacher.

64 © International Baccalaureate Organization 2004

MASTERY

Students must demonstrate mastery of various aspects of Java by documenting evidence in their
program dossiers.

Mastery aspects
Standard level
To achieve a mastery factor of 1.0, students must have mastered at least 10 of the following 15
aspects.

1. Arrays

2. User-defined objects

3. Objects as data records

4. Simple selection (if–else)

5. Complex selection (nested if, if with multiple conditions or switch)

6. Loops

7. Nested loops

8. User-defined methods

9. User-defined methods with parameters (the parameters have to be useful and used within the
method body)

10. User-defined methods with appropriate return values (primitives or objects)

11. Sorting

12. Searching

13. File i/o

14. Use of additional libraries (such as utilities and graphical libraries not included in appendix 2
Java Examination Tool Subsets)

15. Use of sentinels or flags

It is anticipated that this list will provide students with the option to choose algorithms and data
structures appropriate to the problem rather than contriving a solution to fit the mastery aspects.

Where one aspect includes others, all are credited, for example aspect 10 will also satisfy aspects 8
and 9 (always provided that the use is non-trivial, well-documented and appropriate).

MASTERY

© International Baccalaureate Organization 2004 65

Higher level
To achieve a mastery factor of 1.0, students must have mastered at least 10 of the following 15
aspects.

1. Adding data to an instance of the RandomAccessFile class by direct manipulation of the file
pointer using the seek method

2. Deleting data from an instance of the RandomAccessFile class by direct manipulation of the file
pointer using the seek method. (Data primitives or objects may be shuffled or marked as deleted
by use of a flag field. Therefore files may be ordered or unordered).

3. Searching for specified data in an instance of the RandomAccessFile class.

4. Recursion

5. Merging two or more sorted data structures

6. Polymorphism

7. Inheritance

8. Encapsulation

9. Parsing a text file or other data stream

10. Implementing a hierarchical composite data structure. A composite data structure in this
definition is a class implementing a record style data structure. A hierarchical composite data
structure is one that contains more than one element and at least one of the elements is a
composite data structure. Examples are, an array or linked list of records, a record that has one
field that is another record, or an array.

11. The use of any five standard level mastery factors—this can be applied only once

12–15. Up to four aspects can be awarded for the implementation of abstract data types (ADTs)
according to the table entitled “Implementation of ADTs”.

An ADT may be implemented as a class or interface containing data members and methods
appropriate to that ADT. The number of mastery aspects to be awarded will depend on the
thoroughness and correctness of the student’s implementation. Examples are given in the following
table.

“Non-trivial” means that the programmer must demonstrate that the program benefits from the use of
the aspect.

Where one aspect includes others, all are credited (always provided that the use is non-trivial, well
documented and appropriate).

© International Baccalaureate Organization 2004 66

Implementation of ADTs

ADT name One aspect Two aspects Three aspects Four aspects

General criteria. An incomplete ADT is
implemented.

An ADT is implemented
with all key methods
implemented.

An ADT is implemented that
includes some error checking.

An ADT is implemented
completely and robustly.

Lists, implemented using
references (that is, a
dynamically linked list).

A node style class with
appropriate constructors
and methods to set and get
data elements.

Methods are
implemented to add
at/remove from the tail
and the head of the list.

Proper checks are made for
errors such as attempting to get
an element from an empty list or
inserting the same element twice.

All error conditions are checked
for, and all appropriate methods
are implemented. For a doubly
linked list these could be:

size
isEmpty
first
last
before
after
insertHead
insertTail
insertAfter
insertBefore.

Tree (simple, ordered,
binary tree is sufficient
using arrays or dynamically
linked object instances).

A class or interface with
appropriate constructors
and methods to set and get
data elements.

Methods are
implemented to add
at/remove from the
correct point in the tree.

Proper checks are made for
errors such as attempting to get
an element from an empty tree or
not inserting the same element
twice.

All error conditions are checked
for, and all appropriate methods
are implemented. For a simple,
ordered, binary tree these could be:

size
isEmpty
root
parent
leftChild
rightChild.

© International Baccalaureate Organization 2004 67

ADT name One aspect Two aspects Three aspects Four aspects

Stack implemented
dynamically or statically.

A class or interface with
appropriate constructors
and methods to push and
pop items.

Methods to test for full
and empty stack are
added.

Proper checks are made for
errors such as attempting to get
an element from an empty stack.

Probable methods:

push
pop
top
isEmpty
isFull
size.

Queue implemented
dynamically or statically.

A class or interface with
appropriate constructors
and methods to enqueue
and dequeue items.

Methods to test for full
and empty queue are
added.

Proper checks are made for
errors such as attempting to get
an element from an empty queue.

Probable methods:

enqueue
dequeue
front
rear
isEmpty
isFull
size.

Hash table implemented in
an array.

A class or interface with
appropriate constructors
and methods to insert and
remove items.

Methods to test for full
table and duplicate keys
are added.

Proper checks are made for
errors such as attempting to get a
non-existent key, clashes are
dealt with properly.

Probable methods:

hashFunction
insertKey
removeKey
isDuplicate
isEmpty
isFull
size.

It is not possible to provide an exhaustive list here and teachers will need to exercise some degree of judgment in implementing this mastery aspect. It is
considered highly unlikely that teachers will encourage students to develop graphs, heaps, dictionaries, priority queues and ADTs of similar complexity.

“Complete and robust” means that all the needs of the solution are solved without failure.

MASTERY

68 © International Baccalaureate Organization 2004

The mastery factor
Mastery judgments must be made in the same way for both SL and HL. Therefore the criteria should
be applied in the same way to the work in both SL and HL program dossiers.
Both SL and HL students are required to demonstrate mastery of at least 10 aspects. The criteria and
level descriptors should first be applied to the work in the dossier regardless of the mastery aspects
demonstrated.
The appropriate mastery factor should then be determined from the table below. After applying the
mastery factor, the student’s final score should be rounded to the nearest whole number (0.5 or above
rounds up to the next whole number).
Students must also document their dossiers thoroughly. To show mastery of an aspect, it is not sufficient
for students only to use it within a program. In the written documentation, students must include
information about why a particular data structure is appropriate, how it is used (for example, how nodes
are added, deleted and searched for) and where it is used in the program. In other words, students must
provide cross-references between the documentation and specific procedures within the program.

Number of aspects in which the student
demonstrates mastery Mastery factor

10 or more 1.0

9 0.9

8 0.8

7 0.7

6 0.6

5 0.5

4 0.4

3 0.3

0, 1 or 2 0.2

Examples
1. A student achieves 29, as judged by applying the assessment criteria.

Mastery was demonstrated in eight different aspects.

So the final mark awarded is 29 × 0.8 = 23.2 = 23.
2. A student achieves 32, as judged by applying the assessment criteria.

Mastery was demonstrated in twelve different aspects.

So the final mark awarded is 32 × 1.0 = 32.

Documentation of mastery aspects
The mastery aspects should be listed with:

• the page number(s) where they occur in the code listing
• a brief description of how their use benefits the solution.

©International Baccalaureate Organization 2004 69

APPENDIX 1

Glossary of computer science terms
No list of computer science terms can be exhaustive. This glossary includes terms relevant to the IB
Diploma Programme computer science course and these are not necessarily applicable universally. Texts
do not always agree about the definitions of some terms, but ambiguity should be reduced in cases where
more than one word is used for the same concept by using the definition given in the glossary.

Terms that are relevant for the higher level (HL) course only are indicated by HL in the second column.

abstract data structure HL A way of organizing data and its related procedures and functions.

accessor methods HL Methods that do not alter the state or attributes of an object; their
purpose is to return information.

accumulator HL A storage register in the ALU that holds data temporarily while the
data is processed and before it is transferred to memory.

A–D converter Analog–digital converter. A device for converting analog signals into
digital ones for subsequent computer processing; sometimes called a
“digitizer”. A digital to analog (D to A) converter operates in the
reverse direction.

ADSL (Asymmetrical
Digital Subscriber
Line)

HL Technology that increases the data rate over existing telephone lines
accommodating voice and digital data transfer. A special modem is
needed for access.

address bus Pathway from memory to processing unit that carries the address in
memory to and from which data is transferred. See the definitions for
“bus” and “data bus”.

algorithm An ordered set of well-defined instructions for the solution of a
problem in a finite number of steps.

ALU See the definition for “arithmetic and logic unit”.

analog data The representation and measurement of the performance or behaviour
of a system by continuously variable physical entities such as
currents, voltages and so on. See also the definition for “digital data”.

APPENDIX 1

70 © International Baccalaureate Organization 2004

and The output of “and” is True if all statements are True, False if any
statement is False.

applet (Java) A program that runs in the context of a browser.

application (Java) A program that runs when translated by a Java compiler.

archive Data that represents a record of data held and processed at a specific
time, which is held off-line for future research or for legal reasons.

argument HL A value or object passed to a method when it is called.

arithmetic and logic
unit (ALU)

 A part of the computer that performs arithmetic operations, logic
operations and related operations.

array 1. An arrangement of data in one or more dimensions.

2. In programming languages, an aggregate that consists of data
objects, with identical attributes, each of which may be uniquely
referenced by indexing.

ASCII: American
Standard Code for
Information
Interchange

 The primary encoding character set used in computers for textual data
transfer between applications. The set uses eight bits for each
character code, one of these bits being a check bit to verify the seven
bits needed to represent one character. ASCII supports most European
alphabets. Unicode supports most known alphabets and is
increasingly used in data transfer. See also the definition for
“Unicode”.

attribute HL Element of data contained in an object; as specified within the
object’s class.

B Byte.

back-up (file) A second copy of a file, to be used in the event of the original file
being corrupted.

balanced tree HL A tree in which the right and left subtrees of any node have heights
differing by one at the most. See also the definition for “unbalanced
tree”.

bar code A pattern of vertical lines distinguished from each other by width. It
can be read by a bar code reader to provide data to a computer.

bar code reader An optical reader that can read bar codes.

APPENDIX 1

© International Baccalaureate Organization 2004 71

base The basis of a notation or number system, defining a number
representational system by positional representation. In a decimal
system the base is 10, in a hexadecimal system the base is 16, and in a
binary system the base is 2.

batch processing A method of processing data in which transactions are collected and
prepared for input to the computer for processing as a single unit, for
example, payroll.

behaviour HL The way in which an object reacts to the methods applied

BigO notation HL A notation used to describe the relative performance (speed) of an
algorithm.

binary operator HL An operator that combines two operands to give a single result, for
example, addition, multiplication, division, mod, div. See also the
definition for “unary operator”.

binary search A search in which, at each step of the search, the set of data elements
is divided by two, until the searched element is found. See also the
definition for “sequential search”.

binary tree HL A tree in which each node has at most two children.

bit (b) Binary digit. The smallest unit of information for data storage and
transmission. Each bit is considered to be either a “0” or a “1”.

block The smallest unit of data that can be transferred between memory and
backing store in one operation.

BMP An extension given to files in bitmap form.

Boolean expression An expression that has a value of True (T) or False (F).

bps Bits per second.

browser Generally used to give interactive access to information on the World
Wide Web, retrieving web pages and displaying in a multi-media format.

bubble sort A sort in which the first two items to be sorted are examined and
exchanged if necessary to place them in the specified order; the second
item is then compared with the third (exchanging them if required), the
third is compared with the fourth, and the process is repeated until all
pairs have been examined and all items are in the proper sequence. See
also the definitions for “insertion sort”, “selection sort” and “quicksort”.

APPENDIX 1

72 © International Baccalaureate Organization 2004

buffer A portion of storage used to hold input or output data temporarily.

bus The pathway used for sending signals between internal components
of a computer. Components can share the same bus but cannot
transmit simultaneously. See also definitions of “data bus” and
“address bus”.

bus topology A network in which all devices are connected to a common cable,
known as the “bus”. See also definitions of “star topology” and “tree
topology”.

Byte (B) A set of bits considered as a unit; it normally consists of 8 bits and
corresponds to a single character of information.

cable Wire or glass fibre used to connect computers over a network. Copper
(coaxial and twisted pair) and glass fibre (fibre optic cable) are the
most common.

cache Part of the main store that is between main memory and the
processor. It holds a copy of data and instructions that are likely to be
used next by the processor and is hence faster than main memory. See
also the definition for “disk cache”.

CASE See the definition for “computer-assisted software engineering”.

character set A finite set of different characters that is complete for a given
purpose, for example, the 128 ASCII characters.

check digit A digit added to numerical data that can be recalculated and hence
used to check data integrity after input, transmission and so on.

check sum A sum generated using individual digits of a number and employed as
an error-detecting device.

circular queue HL A queue in which the storage area is fixed and the first item is held in
a location that is logically next to the storage location for the last item
of the queue. Data items can be thought of as being arranged in a
circle.

clash (collision) HL A situation in which two or more entries in a file or other data
structure are given the same memory location through the use of a
hash table.

class Combination of data and operations that can be performed on that
data; specification of the data members and methods of the object.

APPENDIX 1

© International Baccalaureate Organization 2004 73

client Desktop computer or terminal used to access a computer-based
system.

client–server A network architecture in which a system is divided between server
tasks performed on the instructions received from clients, requesting
information.

collection A class designed to hold objects (referred to in the syllabus as data
structure).

command language HL A set of procedural operators with a related syntax, used to indicate
the functions to be performed by an operating system.

compiler A program that translates a source program into machine code that
can be converted into an executable program (an object program). See
also the definition for “interpreter”.

computer-assisted
software engineering

 The automation of well-defined methodologies that are used in the
development and maintenance of products. These methodologies
apply to nearly every process or activity of a product development
cycle, for example: project planning, product designing, coding and
testing.

computer architecture The logical structure and functional characteristics of a computer,
including the interrelationships among its hardware and software
components.

computer program A sequence of instructions suitable for processing by a computer.

constructor method A method with the same name as the class that initializes the instance
variables of an object of the class when the object is instantiated.

CRC cards Class, responsibility, collaboration cards. A design tool for classes
that lists a class’s name, its responsibilities and the classes with which
it collaborates on an index card.

cylinder HL Concentric disk tracks of a hard disk (one on top of the other) form a
cylinder.

database management
system (DBMS)

 A computer-based system for defining, creating, manipulating,
controlling, managing and using databases.

data bus The pathway between the memory or peripheral and processing unit
that carries data for processing or data that has been processed. See
also definitions for “bus” and “address bus”.

APPENDIX 1

74 © International Baccalaureate Organization 2004

data compression A method of reducing the size of data. All redundancy in the data is
removed to reduce the storage needed or to speed up transfer. The
data can be uncompressed back to its original state.

data integrity The correctness of data after processing, storage or transmission.

data member A data type that is a member of a class.

data packet Part of a transmitted message that is sent separately. Apart from
containing a portion of the message it will have other data such as
check digits, destination address and so on.

data protection Method of ensuring that personal data is correct and is not misused
either by those holding it or others who have no right to access it.

data security Method of ensuring that data is correct, safe and cannot be read or
changed by those who have no right to access it.

DBMS See the definition for “database management system”.

debugging tool A program used to detect, trace and eliminate errors in computer
programs or other software.

defragmentation
software

 An application that reads file segments from non-contiguous sections
of a storage device and then writes the files to the same device in such
a way that each file segment is contiguous.

De Morgan’s law HL If A and B are Boolean expressions, then

A + B A . B

A . B A + B

=

=

dequeue HL To remove an item from the front of a queue. See also the definition
for “enqueue”.

digital data Discrete data.

digital signature A digital code attached to an electronic message or document, which
is unique and which can be used to authenticate the sender or owner.
Most often used in electronic commerce.

direct access file A file organized in such a way that a calculation provides the address
(location) of a record so that the record can be accessed directly. The
records in the file may be ordered or unordered.

APPENDIX 1

© International Baccalaureate Organization 2004 75

DMA HL Access to memory and devices without the direct control of the processor.
This is most often used for hard disk access and screen display.

disk cache RAM set aside to speed up access to a hard drive. This may be part of
the disk itself or may be incorporated in cache memory.

distributed processing A network in which some or all of the processing, storage and control
functions, in addition to input/output functions, are dispersed among
its nodes.

double buffering HL Two areas of memory set aside for data transfer between the
processor and peripherals. As one is emptied the other is filled up in
order to speed up transfer.

doubly linked list HL A linked list in which each node has both a head pointer and a tail
pointer.

dynamic data
structure

HL Data structures that can change in size during program execution. See
also the definition for “static data structures”.

encapsulation HL The combination of data and the operations that act on the data to
form a single program unit called an “object”.

encryption In computer security, the process of transforming data into an
unintelligible form in such a way that the original data cannot be
easily obtained except by using a decryption process.

enqueue HL To add an item to the rear of a queue. See also the definition for
“dequeue”.

exception An object that is created when an abnormal situation arises in a
program. See also the definition for “exception handler”.

exception handler A program code that handles exceptions that arise during the running
of a program. An exception is thrown to the handler rather than
causing a fatal error. See also the definition for “exception”.

expression A sequence of symbols that can be evaluated.

fibre optic Cabling used for networking that uses fine strands of glass. The
medium can carry a great deal of data and it gives a fast transfer rate.

field (object attribute) A subdivision of a record containing a unit of information. For
example, a payroll record might have the following fields: clock
number, gross pay, deductions and net pay.

APPENDIX 1

76 © International Baccalaureate Organization 2004

FIFO HL First-in-first-out. See also the definitions for “queue”, “stack” and
“LIFO”.

file An organized collection of data.

file manager An application software that can access, create, modify, store and
retrieve files.

fixed-length records HL Records whose size is determined in advance. All such records in a
file have the same length. See also the definition for “variable-length
records”.

fixed point HL The performing of arithmetical calculations without regard to the
position of the radix point. The relative position of the point has to be
controlled during calculations.

flag An indicator with two possible states, “set” or “not set”, that can be
represented by one bit. A flag can be used to indicate that a record
can be deleted, to indicate end of input/output and to sense whether
an interrupt has occurred.

floating point HL In floating point arithmetic, the position of the decimal point does not
depend on the relative position of the digits in the numbers (as in
fixed point arithmetic), since the two parts of the floating point
number determine the absolute value of the number.

formal parameter See the definition for “parameter”.

formatted output Data prepared for output in order to be displayed in a desired format
(for example, trailing zero on 7.50$ instead of 7.5$).

fully-indexed file HL A file in which, although the records are unordered, a particular
record can be found using a sequential access to the index of the file
followed by direct access to the data file. See also the definition for
“partially-indexed file”.

gateway HL A link between two computer systems that converts data passing
through into the formats needed for each system.

graphics tablet
(graphics pad)

 An input device on which the user writes or designs. The image is
reproduced on the screen.

GUI Graphical user interface.

hacking Obtaining unauthorized access to protected resources.

APPENDIX 1

© International Baccalaureate Organization 2004 77

handshaking HL The exchange of predetermined signals when a connection is
established between two devices or components.

hash code HL A method of coding to obtain a search key for the purpose of storing
and retrieving items of data.

hash table HL A table of information that is accessed by way of a shortened search
key (the hash value).

hexadecimal A system of numbers with the base 16; hexadecimal digits range from
0 to 9 and from A to F, where A represents 10 and F represents 15.

high-level language A programming language whose concepts and structures are
convenient for human reasoning. Such languages are independent of
the structures of computers and operating systems.

HTML (Hyper Text
Markup Language)

 A computer language used to construct web pages. Tags are used to
denote the way in which text and graphics are to be displayed. The
language is interpreted by a browser to display the pages.

hub In networking, a switch that sends data to the stations to which it is
attached.

IDE (integrated
development
environment)

 A programming tool that gives programmers a single environment
(that is, the hardware and software environment in which the program
runs) for building programs rather than using individual editors and
debuggers.

identifier The name or label chosen by the programmer to represent a variable,
method, class, data type or any other element defined within the program.

infix notation HL A notation for representing logical operators in which the operator is
written between the operands, for example, A+B or A*B. See also the
definitions for “postfix notation” and “prefix notation”.

inheritance HL The name given to the property whereby an object, which extends
another object, inherits the data members and member functions of
the original.

in-order traversal HL Traversal of a tree visiting the nodes in the order left-child, parent,
right-child. See also the definitions for “pre-order traversal” and
“post-order traversal”.

insertion sort HL A sort in which each item in a set is inserted into its proper position in
the sorted set according to a specified criterion. See also the
definitions for “bubble sort”, “selection sort” and “quicksort”.

APPENDIX 1

78 © International Baccalaureate Organization 2004

interface The hardware and associated software needed for communication
between processors and peripheral devices to compensate for the
difference in their operating characteristics.

interpreter A program that translates and executes each instruction of a
programming language before it translates and executes the next
instruction. See also the definition for “compiler”.

interrupt HL A suspension of a process, such as the execution of a computer
program caused by an external event, performed in such a way that
the process can be resumed.

ISDN (integrated
services digital
network)

HL An international communications standard for sending voice, video
and other data over digital telephone lines.

ISO International Organization for Standardization.

iteration The process of repeatedly running a set of computer instructions until
some condition is satisfied.

JPEG (joint
photographic expert
group)

 A recognized standard of compression of graphics files that has some
loss.

keys HL 1. In computer security, a sequence of symbols used with a
cryptographic algorithm for encrypting or decrypting data.

2. In databases, the key of a record is a field with a unique value
that can be used to locate that record.

latency See the definition for “rotational delay”.

left-child HL In a tree, the node to the immediate left of a parent node. See also the
definitions for “parent” and “right-child”.

library manager HL Many programming languages permit user-defined functions to be
stored centrally and re-used in various programs. This central storage
is called a “library”. A library manager is a utility program that
catalogues, pre-compiles and links library modules.

LIFO HL Last-in-first-out. See also the definitions of “stack”, “queue” and “FIFO”.

linked list HL A data structure technique of storing data in different areas of
memory rather than in a contiguous block and keeping track of the
data using pointers.

APPENDIX 1

© International Baccalaureate Organization 2004 79

linker HL A utility program that brings together the object modules, operating
system routines and other utility software to produce a complete,
executable program.

loader HL A program that copies an object program held in memory into the
memory area designated by the operating system for execution.

local area network
(LAN)

 A computer network where all the computers are directly linked by
cables and/or microwave transmission. This is usually located on a
user’s premises within a limited geographical area. See also the
definition for “wide area network (WAN)”.

local variable A variable that is defined and is capable of being used only in one
specified program block.

logic circuit HL A circuit whose output can be determined by knowing the input and
by following the path through the logic gates.

logic error An error arising from an incorrect appreciation of the problem leading
to an incorrect action being performed and hence a false result being
produced.

logic gate HL A combinational circuit that performs an elementary logic operation
and usually involves one output.

magnetic ink
character recognition
(MICR)

 The identification of characters through the use of magnetic ink. See
also the definition of “OCR”.

mainframe A computer, usually in a computer centre, with extensive capabilities
and resources to which other computers may be connected so that
they can share facilities.

master file A permanent file holding information that can be accessed and that is
periodically updated by processing with a transaction file. See also
the definition for “transaction file”.

memory address
register (MAR)

 Holds the address in memory of the instruction at present being
executed.

memory manager HL A program that is usually part of the operating system that controls
the allocation of memory to various applications. It is particularly
important in multi-tasking systems where applications might
otherwise cause conflicts, and for implementing virtual machines and
virtual memory.

APPENDIX 1

80 © International Baccalaureate Organization 2004

memory mapped I/O See the definition for “DMA”.

menu A display of a list of optional facilities that can be chosen by the user
in order to carry out different functions in a system.

method 1. The behaviour or operation of an object.

2. The procedure used by an object as specified within the object
class. See also the definition for “method signature”.

method signature The number and types of arguments of a method.

MICR See the definition for “magnetic ink character recognition”.

microprocessor An integrated circuit incorporating the main components of a central
processor. These circuits are used for microcomputers and small
devices controlled by computer.

microwave
transmission

 A method of electronic communication that does not require cables.

modem An abbreviation for “modulator/demodulator”: a piece of electronic
equipment that converts digital signals from a computer into audio signals
that are transmitted over telephone lines, and converts them back again.

modular language A language in which a complete program can be broken down into
separate components (modules), each of which is to some extent self-
contained. For example, the scope of variables can be limited to a
module and does not extend through the entire program. See also the
definition for “top-down design”.

modularity One aspect of structured programming in which individual tasks are
programmed as distinct sections or modules. One advantage is the
ease with which individual sections can be modified without
reference to other sections.

module A self-contained subset of a program.

modulo arithmetic Arithmetic that uses the integer result and integer remainder of
division as two separate entities.

multi-tasking A mode of operation that provides for concurrent performance, or
interleaved execution, of two or more tasks.

multi-user system A system that allows two or more people to use the services of a
processor within a given period of time.

APPENDIX 1

© International Baccalaureate Organization 2004 81

multi-processing The simultaneous execution of two or more computer programs or
sequences of instructions by a computer (parallel processing).

nand HL The output of “nand” is False only if all inputs are True, otherwise the
output is True.

network Any set of interconnected computer systems that share resources and
data. See also the definitions for “networking”, “local area network
(LAN)” and “wide area network (WAN)”.

networking Making use of the services of a network. See also the definitions for
“network”, “local area network (LAN)” and “wide area network
WAN”).

node 1. In the terminology of tree structures, each position in the tree is
called a “node”.

2. Any device on a computer network that can be addressed so that
it can be contacted by other computers.

3. A “host” computer on a network.

nor HL The output of “nor” is True if all statements are False, False if at least
one statement is True.

not The output of “not” for a statement P is True if P is False, False if P is
True.

object An object is a combination of data and the operations that can be
performed in association with that data. Each data part of an object is
referred to as a data member while the operations can be referred to
as methods. The current state of an object is stored in its data
members and that state should only be changed or accessed through
the methods. Common categories of operations include: the
construction of objects; operations that either set (mutator methods)
or return (accessor methods) the data members; operations unique to
the data type; and operations used internally by the object.

object-oriented
programming (OOP)

 An approach to programming in which units of data are viewed as
active “objects” rather than the passive units envisioned by the
procedural paradigm.

OCR Optical
character recognition
(reader)

 Refers to the use of devices and software to “read” characters and
translate them into ASCII characters for later processing.
Applications of OCR include the scanning of printed documents to
convert the text into digital ASCII text that can then be edited in word
processors.

APPENDIX 1

82 © International Baccalaureate Organization 2004

OMR forms Optical mark and read forms.

on-line When a user has access to a computer via a terminal.

on-line processing
(interactive)

 Data processing in which all operations are performed by equipment
directly under the control of a central processor, for example, airline
reservations.

open systems
interconnection (OSI)

HL A set of protocols allowing different types of computers to be linked
together.

operand HL In an arithmetical expression, the operand is the data that is to be
operated on.

operating system
(OS)

 Software that controls the execution of programs and that may
provide services such as resource allocation, scheduling, input/output
control, and data management.

operator HL A character or string of characters that designate an operation. See
also the definitions for “binary operator” and “unary operator”.

operator precedence In programming languages, an order relation defining the sequence of
the application of operators within an expression.

or The output of “or” is True if at least one input is True, otherwise the
output is False.

overflow HL The generation of a quantity, as a result of an arithmetic operation,
that is too large to be contained in the result location. See also the
definition for “underflow”.

packet HL A group of bits made up of control signals, error control bits, coded
information and the destination for the data.

packet switching HL A method of transmitting data in which the data packet is transmitted
as one entity irrespective of the whole message.

parallel interface HL An interface through which a computer transmits or receives data that
consists of several bits sent simultaneously on separate wires. See
also the definition for “serial interface”.

parameter HL A parameter is passed to a routine or method by variable name and
type. When the code is run, the parameter is replaced by the value of
the variable, and becomes the argument of the routine, referred to by
the variable name in the definition.

APPENDIX 1

© International Baccalaureate Organization 2004 83

parameter passing The assignment of values to parameters to be used in a procedure.

parent (node) HL The node immediately above a given node, at the next level up. There
can only be one parent node for each node, but different nodes may
share the same parent.

parity bit A binary digit appended to a group of binary digits to make the sum
of all the digits, including the appended binary digit, either odd or
even as established beforehand.

parsing HL The breaking down of high-level programming language statements
into their component parts during the translation process. An example
would be identifying reserved words and variables.

partially-indexed file HL A file in which records are ordered in groups. Sequential access to an
index followed by direct access to the first record in the group, then
sequential access to the desired record, retrieves a particular record.
See also the definition for “fully-indexed file”.

pass-by-reference The parameter-passing mechanism by which the address of a variable
is passed to the subprogram called. If the subprogram modifies the
formal parameter, the corresponding actual parameter is also changed.
In Java, all objects, including arrays, are passed-by-reference. See
also the definition for “pass-by-value”.

pass-by-value The parameter-passing mechanism by which a copy of the value of
the actual parameter is passed to the called procedure. If the called
procedure modifies the formal parameter, the corresponding actual
parameter is not affected. In Java, all primitives are passed-by-value.
See also the definition for “pass-by-reference”.

peripheral device Any device that can communicate with a particular computer, for
example: input/output units, auxiliary storage, printers.

pointer HL A reference to an address that enables the retrieval of a data item or
record. Used in dynamic data structures to move from item to item.

pointing device An instrument, such as a mouse, trackball or joystick, used to move
an icon (sometimes in the form of an arrow) on the screen.

polling HL Interrogation of devices for such purposes as avoiding contention,
determining operational status, or determining readiness to send or
receive data.

polymorphism HL The ability of different objects to respond appropriately to the same
operation.

APPENDIX 1

84 © International Baccalaureate Organization 2004

pop HL To remove an item from the top of a stack.

port HL An access point for data entry or exit.

postfix notation HL A method of forming mathematical expressions in which each
operator is preceded by its operands and indicates the operation to be
performed on the operands or the intermediate results that precede it;
for example, A added to B and the sum multiplied by C is represented
by the expression AB+C*. See also the definitions for “infix
notation” and “prefix notation”.

post-order traversal HL Traversal of a tree by visiting the nodes recursively in the order left-
child, right-child, parent. See also the definitions for “pre-order
traversal” and “in-order traversal”.

prefix notation HL A method of forming mathematical expressions in which each
operator precedes its operands and indicates the operation to be
performed on the operands or the intermediate results that follow it.
See also the definitions for “infix notation” and “postfix notation”.

pre-order traversal HL Traversal of a tree by visiting the nodes recursively in the order
parent, left-child, right-child. See also the definitions for “in-order
traversal” and “post-order traversal”.

primary memory The part of the memory where the data and programs that are in use at
the time are stored.

primitive data type Integer, real, character or Boolean data types.

private class members Members of a class that are only accessible from methods inside the class.

program counter HL A register that holds the address of the next instruction to be fetched
in the fetch execute cycle.

protocol An internationally agreed set of rules to ensure transfer of data
between devices. A standard protocol is one that is recognized as the
standard for a specific type of transfer. For example, TCP/IP.

prototyping The construction of a simple version of a system in the design stage,
showing the user interface but without full processing behind it. This
allows the user to propose changes at the design stage.

pseudocode An artificial language used to describe computer program algorithms
without using the syntax of any particular language. During the
development of an algorithm, pseudocode often contains sections in
natural language that will be replaced later.

APPENDIX 1

© International Baccalaureate Organization 2004 85

public class members Members of a class that are accessible from anywhere and from any class.

push HL To add an item to the top of a stack.

queue HL An abstract data structure where items are inserted at one end and
retrieved from the other end (FIFO). (The standard operations are
given in 5.2.7.)

quicksort HL A sort in which a list is first partitioned into lower and upper sublists
for which all keys are, respectively, less than some pivot key or
greater than the pivot key. See also the definitions for “bubble sort”,
“selection sort” and “insertion sort”.

real-time processing The manipulation of data that is required or generated by some process
while the process is in operation; usually the results are used to influence
the process, and perhaps related processes, while it is occurring.

record An aggregate that consists of data objects, possibly with different
attributes, that usually have identifiers attached to them. See also the
definition for “field”.

recursion HL The process whereby a method refers to itself. In many programming
languages, a procedure or function can call itself.

reference HL Contains the location in memory of an object. The object can contain
many individual data members.

register HL A part of internal storage that has a specified storage capacity and is
usually intended for a specific purpose.

requirements
specification

 A document that sets out the customer requirements of a computer
system. It is written as part of the systems analysis and can be used
later to evaluate the system when implemented.

right-child HL In a tree, the node to the immediate right of a parent node. See also
the definitions for “parent” and “left-child”.

robotics The techniques used in designing, building and using robots.

robustness A term used to describe the ability of a program to resist crashing due

APPENDIX 1

86 © International Baccalaureate Organization 2004

router A device that identifies the destination of messages and sends them
via an appropriate route.

search engine A program that searches a large database to find matching items. The
most common use of a search engine is to find Internet addresses
based on given key words.

secondary memory A type of memory that allows a user to store data and programs for as
long as desired, in, for example, a hard disk drive.

sector HL The smallest accessible storage unit on a disk. The point at which the
sector intersects with a track is used to reference the location.

security Security in the context of computing is a large subject but in outline it
might refer to:

1. risk to hardware

2. risk to software

3. risk to information.

seek time HL In a disk drive, the time taken for the read/write heads to position
themselves over the appropriate track. See also the definition for
“rotational delay”.

selection sort A sort in which the items in a set are examined to find an item that
fits specified criteria. This item is appended to the sorted set and
removed from further consideration, and the process is repeated until
all items are in the sorted set. See also the definitions for “bubble
sort”, “insertion sort” and “quicksort”.

semantics The relationships of characters or groups of characters to their
meanings, independent of the manner of their interpretation and use.

sensor A device that detects measurable elements of a physical process for
transfer to a computer.

sentinel HL A special value that marks the end of a set of data. Also called an
“end of data marker” or “rogue value”.

sequential access An access method in which records are read from, written to, or
removed from a file based on the logical order of the records in the
file.

sequential file A file in which records are ordered and are retrieved using sequential
access.

APPENDIX 1

© International Baccalaureate Organization 2004 87

sequential search A search in which records in a file or in another data structure are
examined one by one in the order in which they were entered until a
specified criterion is met or until there are no more records to
examine. See also the definition for “binary search”.

serial interface HL An interface through which a computer transmits or receives data,
one bit at a time. See also the definition for “parallel interface”.

server 1. A program that provides services requested by client programs.

2. A computer that provides services to another computer connected
over a network.

signature A combination of specifiers, the method name and the parameter list,
that uniquely identifies the method.

simulation The use of a data processing system to represent selected behavioural
characteristics of a physical or abstract system.

single-tasking A mode of operation that allows only one program to be in use at any
time.

single-user system A system that only allows one user at a time.

software design The systematic application of scientific and technological knowledge,
methods and experience to the design, implementation, and testing of
software to optimize its production and support.

software reuse HL Creating classes that operate on a wide variety of different objects,
and can be “dropped into” a current project, leading to reduced
software cost and increased reliability.

speech recognition
(voice recognition)

 A process of comparing spoken words with those stored in the
system.

stack HL An abstract data structure where only the top is accessible for the
insertion and retrieval of items (LIFO).

star topology A network in which each device is connected to a central hub. See
also the definitions for “tree topology” and “bus topology”.

static data structure Data structures of which the size and nature are determined before a
program is executed.

storage requirements A description of how much memory is required during the running of
the program.

APPENDIX 1

88 © International Baccalaureate Organization 2004

storyboard A diagrammatic form of a prototype showing a planned sequence of
screen displays, demonstrating the different paths available to the
user.

structure diagram A diagram that represents the working relationships between the parts
of a system or program.

subclass HL A class that extends the attributes and methods of a parent class.

subprogram A program invoked by another program.

subtree HL A tree that is part of another tree.

superclass HL A class that provides its attributes and methods to a subclass.

syntax The rules that govern the structure of language statements; in particular,
the rules for forming statements in a source language correctly.

syntax error An error in the rules that govern the structure of language statements.

system documentation Documentation of the result of the systems analysis stage giving the
purpose of the system, the required inputs and outputs, a test plan and
the results that are expected.

system life cycle The course of development changes through which a system passes
from its conception to the termination of its use; for example, the
phases and activities associated with the analysis, acquisition, design,
development, testing, integration, operation, maintenance, and
modification of a system.

systems analyst A person who carries out a systematic investigation of a real or
planned system to determine the information requirements and
processes of the system, and how these relate to each other and to
another system.

systems design The investigation and recording of existing systems and the design of
new systems.

systems flowchart A flowchart used to describe a complete data processing system, with
the flow of data through the clerical operations involved, down to the
level of individual programs, but excluding details of such programs.

TCP/IP (transmission
control protocol/
Internet protocol)

 A set of communications protocols used to connect hosts on the
Internet.

APPENDIX 1

© International Baccalaureate Organization 2004 89

top-down design A method of solving a problem by breaking it down into smaller
subproblems. These are then broken down in turn until ultimately a
pseudocode representation is obtained that can be used as a basis for
program construction. See also the definition for “modular language”.

trace A record of the execution of a computer algorithm exhibiting the
sequences in which the instructions were executed.

track HL A series of concentric rings placed on a disk surface by the operating
system.

transaction file A temporary file holding data that is later used for processing,
generally to update a master file. See also the definition for “master
file”.

translator A computer program that transforms all or part of a program
expressed in one programming language into another programming
language or into a machine language suitable for execution. See also
the definitions for “compiler” and “interpreter”.

tree HL A non-linear data structure (representing a strictly hierarchical system
of data) where each data item is thought of as a node.

tree topology A network that combines the characteristics of bus and star
topologies. Groups of star topologies are connected to a central cable.
See also the definitions for “star topology” and “bus topology”.

truncation HL 1. The process of approximating a number by ignoring all
information beyond a set number of significant figures.
Truncation error is the error introduced by this process.

2. The deletion or omission of a leading or a trailing portion of a
string in accordance with specified criteria.

truth table HL A table that describes a logic function by listing all possible
combinations of input values and indicating the output value for each
combination.

two’s complement HL A method of representing negative numbers in the binary system.

unary operator HL An operator requiring only one operand to give a single result; for
example, negation (overbar for a Boolean expression). See also the
definition for “binary operator”.

unbalanced tree HL A tree in which the right and left subtrees have heights differing by
more than one. See also the definition for “balanced tree”.

APPENDIX 1

90 © International Baccalaureate Organization 2004

underflow HL The generation of a result whose value is too small for the range of
the number representation being used. See also the definition for
“overflow”.

Unicode A standardized 16-bit character set that represents the character sets
of most major languages in the world. See also the definition for
“ASCII”.

user-defined methods Methods written by the user which are not inherent to the language.

user-defined objects Objects whose members and methods are defined by the user and not
inherent in the language.

user interface Hardware, software, or both, that allow a user to interact with and
perform operations on a system, program, or device.

utility A program designed to perform an everyday task such as copying
data from one storage device to another.

validation (data input) The process of checking, with software, that the data input is of the
right type and within reasonable limits. See also the definition for
“verification (data input)”.

variable-length
records

HL Records whose length is not determined in advance. Each record is
allocated the space that it needs to store the information it holds. See
also the definition for “fixed-length record”.

verification (data
input)

 A method of ensuring that the data in the computer system is the
same as the original source data. This may be done by double entry.
See also the definition for “validation (data input)”.

virtual memory The use of secondary memory as if it were primary memory.

virus A program that infects other programs or files by embedding a copy
of itself into the target files.

virus checker A utility program that seeks out and eliminates known viruses.

wide area network
(WAN)

 A network that provides communication services to a geographic area
larger than that served by a local area network or a metropolitan area
network, and that may use or provide public communication facilities.
See also the definition for “local area network (LAN)”.

word A group of bits that can be addressed, transferred and manipulated as
a single unit by the central processing unit.

APPENDIX 1

© International Baccalaureate Organization 2004 91

xor HL (Exclusive or gate.) The output is True if the two inputs are different;
the output is False if the two inputs are alike.

Adapted and reprinted by permission of Pearson Education Limited.

92 ©International Baccalaureate Organization 2004

APPENDIX 2

Java examination tool subset (JETS)
The computer science syllabus requires students to learn Java. This does not mean all of Java. With
the many libraries and classes, and the constant changing of the language, that would be impractical.
The intention is not for the students to become Java “experts”. Rather Java provides a platform for
students to develop and demonstrate their understanding of fundamental algorithm concepts.
Therefore students must only learn a small subset of the entire language, referred to as JETS.

Teachers should note that sample algorithms can be found in the teacher support material for this
course.

Only the commands, symbols, and constructs specified in JETS will appear in examination questions.
Students will not be required to read or write answers involving other classes or methods. As the
program dossier is also written in Java, students will have learned some other constructs and classes,
and may choose to use them in their examination answers. However, some classes and methods are
specifically forbidden, as they contain commands that would perform tasks that DP students are
expected to program from simpler constructs. Students must not use other powerful constructs to avoid
coding algorithms. For example, the java.util sorting methods are not to be used to answer a question
requiring students to create a sorting algorithm.

JETS also specifies a naming convention and style for examination questions. Teachers should
familiarize their students with JETS, including the naming and style conventions. These conventions
are intended to make examination questions clear and easily readable. Students are not required to
follow these conventions in their answers. However, they should write answers in a clear, consistent
and readable style, and must not use non-st

APPENDIX 2

© International Baccalaureate Organization 2004 93

The presentation of JETS

Style Conventions
The style conventions to be used in all examination papers will be as follows:

• examination questions and general rubric will be printed in Times New Roman (proportional)
font (12 point). Some general examination rubric will be printed in italics. JETS-code will
be printed in Courier (fixed spacing) font 10.5 point

• all reserved words will be written in lower case bold

• Class names will always start with a Capital letter

• variable and method names will always start with a small letter

• multiWordIdentifiers will use embedded capitals to separate the words (not underscores)

• identifiers will generally use whole words, not abbreviations or acronyms

• proper indentation will always be used

• the order of modules is irrelevant, but the main and/or constructor method will always be
placed at the top

• some examination questions may include statements such as, “recall that ...”. The intention is to
remind students of any uncommon commands, for example: Recall that
String.indexOf(String) can be used to find the position of one string inside another,
like this:

 String email = "exams@ibo.org";
 int atSign = email.indexOf("@"); //result is 5

• non-standard language elements (library classes) may be explained by writing: “A library
provides the method|data-type ...”, followed by an explanation and example.

For French and Spanish versions of examination papers

• reserved words will remain in English

• string constants will be translated

• user-defined identifiers (class, variable and method names) will be translated as appropriate.

APPENDIX 2

94 © International Baccalaureate Organization 2004

The syntax of JETS

Operators
Arithmetic: + , - , * , / , % (students must understand the polymorphic behaviour of the
division operator, for example int / int ==> int)

Relational: == , > , < , >= , <= , !=

Boolean : ! , && , ||

(bitwise boolean operators & , | are not required)

Operator precedence
The standards for operator precedence in Java are assumed knowledge. Examination questions may
use extra parentheses for clarity and students should be encouraged to do the same in their solutions.

Notation for literals (values)
string : "in quotation marks"

char : 's' // in single quotes

integer : 123456 or -312

double : 124.75 (fixed point) or 1.2475E+02 (floating point)

boolean : true , false

Constant identifiers will be written in ALL_CAPS, using an underscore to separate words. They will
be defined using final static , as :
final static double NATURAL_LOG_BASE = 2.1782818;

Primitive data types
byte int long double char boolean

(short and float are not included)

Structured data types
String class

StringBuffer class

Linear Arrays : int[] numbers = new int[100];

(array of 100 integers, index 0..99)

2-D arrays: int[][] checkers = new int[8][8];

Text files (sequential files)

Random Access files (fields as primitive types)

** The numeric wrapper classes Integer, Double, and so on, will only be used to provide the
functionality of static methods for doing type conversions, as demonstrated in the IBIO methods
(below).

Parameter passing
Follows the standard specification in Java, for example, primitive types are automatically passed by
value, and structured types (arrays and objects) are always passed by reference.

APPENDIX 2

© International Baccalaureate Organization 2004 95

Symbols
 /* multi-line
 comments */

 // single line
 // comments

() round brackets for parameters

[] square brackets for subscripts in arrays

. dot notation for dereferencing object methods and data members

{ } for blocks of code

{ 1 , 2 , 3 } for initializing an array

The assumed set of IBIO commands is listed below.

APPENDIX 2

96 © International Baccalaureate Organization 2004

Input Methods
All input methods display a prompt String, accept keyboard input until the user presses the [enter] key,
and then return a value of the specified type. It is assumed that the input routines cannot cause a run-
time error. If the user types a String that cannot be converted to the correct type, the input routine
returns a default value, for example, a blank String, a 0 numeric value, and so on.
String inputString(String prompt)

String input(String prompt)

String input() // does not print a prompt before inputting

char inputChar(String prompt)

boolean inputBoolean(String prompt)

byte inputByte(String prompt)

int inputInt(String prompt)

long inputLong(String prompt)

double inputDouble(String prompt)

output(String) --> outputs a String

output(char) --> outputs a char value

output(boolean) --> outputs a boolean value

output(byte) --> outputs a byte value

output(int) --> outputs an int value

output(long) --> outputs a long value

output(double) --> outputs a double value

JETS also uses the System console output commands :
System.out.print(String)

System.out.println(String)

// System.in.read() is not included in JETS, although it is used inside
// IBIO.

APPENDIX 2

© International Baccalaureate Organization 2004 97

Loops and decisions
if (boolean condition)
 { ... commands ... }
else if (boolean condition)

 { ... commands ... }
else
 { ... commands ... } ;

// switch..break.. is not included in JETS, but students may use it
// in their answers if they wish.

for (start; limit; increment)
 { ...commands... } ;

while (boolean condition)
 {...commands... } ;

do
 { ...commands... }
while (boolean condition) ;

Files
Standard level/Higher level

BufferedReader(FileReader) -will be used to open a sequential file for input
.ready
.read
.readLine
.close

PrintWriter(FileWriter) -will be used to open a sequential file for output
.ready
.print
.println
.close

// Serialization is not required.

Higher level only
RandomAccessFile

constructor: randomAccessFile(String filename, String accessMode)
.seek
.length
.read readInt, readDouble, readBytes, readUTF
.write writeInt, writeDouble, writeBytes, writeUTF
.close

APPENDIX 2

98 © International Baccalaureate Organization 2004

Standard methods and data members
Math class

.abs,.pow,.sin,.cos,.round,.floor

String class

+ for concatenation
.equals(String)
.substring(startPos, endPos)
.length()
.indexOf(String)
.compareTo(String)
.toUpperCase()
.toLowerCase()

Arrays

.length

(casts)

 (int) (double) (byte) (char)

(numeric + "") // to convert a numeric value to a String

Static methods
Students should be aware that static methods in some classes can be used without instantiating an
object, such as using Integer.parseInt(stringVal) to convert a string to an integer (without
instantiating a new Integer).

Understanding the new construct is required. Students must be aware that new causes an object to be
instantiated, and that this is somewhat different from declaring a primitive data type. They should
thoroughly understand the rules for scope and lifetime of identifier references, and that instances may
be automatically destroyed and garbage collected when they go out of scope. For example, students
must understand that a value stored in a method's local variables will be lost when the method returns,
and that this value cannot be retrieved by subsequent calls to the method. Static is a required concept,
but will not be directly tested in code (it may appear, but the meaning in the code will not be directly
examined).

Dynamic memory allocation (HL only)
Students must also understand that an object type can be declared without instantiating, and that this
reference (pointer) can be reassigned later to either a new instance or to a different existing instance.

Other syntactical issues
Java permits commands to span multiple lines. This may be done in examination questions, but only
when it improves clarity and readability, for example in a long parameter list:
 public int sortArray(String[] names ,
 int listSize ,
 char ascendingOrDescending
)

APPENDIX 2

© International Baccalaureate Organization 2004 99

Brackets will always be lined up, either horizontally or vertically:
public void printNumbers()
{ int x = 0;
 while (x < 10)
 { output(x); } //brackets for loop body lined up horizontally
} // brackets for method body lined up vertically

Class scope
public, private

// implements and abstract are not included
// interface is not included

Overall structure of classes
Students must understand the concept of a constructor and a main method, and the difference
between them. They must also understand the concept of extends.

Applets will not be examined in coded algorithms, although some concepts of applets (for example,
security) may be examined.

Error handling
try { ...commands... }
catch (Exception e) { ...handle the error... };

// Error handling in examinations will be limited to simply
outputting an error message, setting a flag, or returning from the
method. Complex handling of specific Exception types will not be
expected. Only the generic Exception and IOException errors must be
trapped.
 methodName() throws IOException

Students must understand the idea of throwing an exception, rather than trapping it with
try…catch….

APPENDIX 2

100 © International Baccalaureate Organization 2004

Algorithms to exemplify the elements of JETS
The examples of algorithms that follow are an attempt to illustrate most of the language elements of
JETS. In the actual examinations, most algorithms will be considerably shorter than these examples.
These were compiled using the Sun JDK 1.3 (Java 2). They run as Console (text-mode) applications,
using a standard library of console I/O methods (IBIO).

 ==

//- HELLO - demonstrates simplified input/output methods (IBIO) -
public class Hello
{ public static void main(String[] args)
 { new Hello();}

 public Hello()
 { String name = inputString("What is your name?");
 int age = inputInt("How old are you?");
 output("Hello " + name);
 output("In 2010, you will be " + (age + 7));
 }

//==
// Below are the IBIO simple input and output methods
// These are assumed to be copied into the source code for all
// algorithms. A note at the end of each algorithm reminds
// students of this fact. Students are required to
// understand the USE of these methods, not memorize their code.
//==

 static void output(String info)
 { System.out.println(info);
 }
 static void output(char info)
 { System.out.println(info);
 }
 static void output(byte info)
 { System.out.println(info);
 }
 static void output(int info)
 { System.out.println(info);
 }
 static void output(long info)
 { System.out.println(info);
 }
 static void output(double info)
 { System.out.println(info);
 }
 static void output(boolean info)
 { System.out.println(info);
 }

APPENDIX 2

© International Baccalaureate Organization 2004 101

 static String input(String prompt)
 { String inputLine = "";
 System.out.print(prompt);
 try
 {inputLine = (new java.io.BufferedReader(
 new java.io.InputStreamReader(System.in))).readLine();}
 catch (Exception e)
 { String err = e.toString();
 System.out.println(err);
 inputLine = "";
 }
 return inputLine;
 }
 static String inputString(String prompt)
 { return input(prompt);
 }
 static String input()
 { return input("");
 }
 static int inputInt()
 { return inputInt(""); }

 static double inputDouble()
 { return inputDouble(""); }

 static char inputChar(String prompt)
 { char result=(char)0;
 try{result=input(prompt).charAt(0);}
 catch (Exception e){result = (char)0;}
 return result;
 }
 static byte inputByte(String prompt)
 { byte result=0;
 try{result=Byte.valueOf(input(prompt).trim()).byteValue();}
 catch (Exception e){result = 0;}
 return result;
 }
 static int inputInt(String prompt)
 { int result=0;
 try{result=Integer.valueOf(
 input(prompt).trim()).intValue();}
 catch (Exception e){result = 0;}
 return result;
 }
 static long inputLong(String prompt)
 { long result=0;
 try{result=Long.valueOf(input(prompt).trim()).longValue();}
 catch (Exception e){result = 0;}
 return result;
 }
 static double inputDouble(String prompt)
 { double result=0;
 try{result=Double.valueOf(
 input(prompt).trim()).doubleValue();}
 catch (Exception e){result = 0;}
 return result;
 }

APPENDIX 2

102 © International Baccalaureate Organization 2004

 static boolean inputBoolean(String prompt)
 { boolean result=false;
 try{result=Boolean.valueOf(
 input(prompt).trim()).booleanValue();}
 catch (Exception e){result = false;}
 return result;
 }
//=========== end IBIO =======================================
}

APPENDIX 2

© International Baccalaureate Organization 2004 103

//---
// QUADRATIC finds roots of a quadratic polynomial
//---

public class Quadratic
{ public static void main(String[] args)
 { new Quadratic();}
 public Quadratic()
 { int a = inputInt("A? ");
 int b = inputInt("B? ");
 int c = inputInt("C? ");
 if (isSolvable(a,b,c))
 { output("x1 = " + bigRoot(a,b,c));
 output("x2 = " + smallRoot(a,b,c));
 }
 else
 { output("No roots");}
 input("--- press [enter] ---");
 }

 boolean isSolvable(int a, int b, int c)
 { if ((a != 0) && (discriminant(a,b,c) < 0))
 { return false; }
 else
 { return true; }
 }

 double discriminant(int a, int b, int c)
 { return b*b - 4*a*c;
 }

 double smallRoot(int a, int b, int c)
 { return (-b - Math.pow(discriminant(a,b,c),0.5)) / (2*a);
 }

 double bigRoot(int a, int b, int c)
 { return (-b + Math.pow(discriminant(a,b,c),0.5)) / (2*a);
 }

//--
//---- IBIO - include simplified input and output methods ----
//--
}

APPENDIX 2

104 © International Baccalaureate Organization 2004

//---
// NameSaver sample algorithm – input a list of names into an array.
// XXX" ends the input, then the list is stored in a sequentialfile.
// This class does not attempt to handle the possible IOExceptions,
//(e.g. locked file or full disk drive) but simple "throws" them.
//---

import java.io.*;

public class NameSaver
{ public static void main(String[] args) throws IOException
 { new NameSaver();}

 String names[] = new String[1000];
 int namesCount = 0;

 public NameSaver() throws IOException
 { inputNames();
 saveNames();
 }

 void inputNames()
 { String thisName = "";
 namesCount = 0;
 do
 { output("Type a name");
 thisName = input();
 if (!thisName.equals("XXX"))
 { names[namesCount] = thisName;
 namesCount = namesCount + 1;
 }
 } while (!thisName.equals("XXX") && (namesCount < 1000));
 }

 void saveNames() throws IOException
 { PrintWriter outFile = new PrintWriter(

new FileWriter("namelist.txt"));
 for (int c = 0; c < namesCount; c++)
 { outFile.println(names[c]);
 }
 outFile.close();
 }

//--
//---- IBIO - include simplified input and output methods ----
//--
}

APPENDIX 2

© International Baccalaureate Organization 2004 105

//---
// ENCRYPT – Encrypts a string by counting the length, adding that
// number to the ASCII code of each CAPITAL letter.Then the result is
// printed backward. Only CAPITAL LETTERS get changed.
// "HOT2Day" --> adding 7 --> "OVA2Kay" --> "yaK2AVO"
//---
public class Encrypt
{ public static void main(String[] args)
 { new Encrypt();}

 public Encrypt()
 { String message, coded;
 output("Type a message");
 message = input();
 coded = encrypt(message);
 output(reverse(coded));
 input("---- press [enter] ----");
 }

 String encrypt(String message) // Strings are immutable, so
 { int p,num; // use a StringBuffer to
 char codeChar; // allow changing single chars
 StringBuffer text = new StringBuffer(message);

 num = text.length();
 for(p = 0; p < num; p++)
 { codeChar = addCode(text.charAt(p), num);
 text.setCharAt(p,codeChar);
 }
 return text.toString();
 }

 char addCode(char letter,int change)
 { if ((letter >= 'A') && (letter <= 'Z')) // chars behave like
 { char oldCode = (char)(letter - 'A') ; // ints, arithmetic
 // can be performed
 char newCode = (char)((oldCode + change) % 26);

 return (char)('A' + newCode); // (char) cast required to
 } // avoid warning messages
 else
 { return letter; }
 }

 String reverse(String message)
 { String backward = "";
 for(int c = message.length() - 1; c >= 0; c = c-1)
 { backward = backward + message.charAt(c);
 }
 return backward;
 }

//--
//---- IBIO - include simplified input and output methods ----
//--
}

APPENDIX 2

106 © International Baccalaureate Organization 2004

//--
// FileSorter demonstrates using RandomAccessFile to store "records".
// Java does not contain a specific construct like STRUC or RECORD.
// An "inner class" can be used for this purpose. There is no
// command available to read or write "records" to random access
// files, so these must be programmed, writing one field at a time.
//--
import java.io.*; // contains all file-oriented classes and methods

public class FileSorter
{ public static void main(String[] args) throws IOException
 { new FileSorter();}

 public FileSorter() throws IOException
 {
 RandomAccessFile ranFile = new RandomAccessFile("Items.dat","rw");
 create(ranFile);
 System.out.println("--- Records before sorting ---");
 display(ranFile);
 sort(ranFile);
 System.out.println("--- Records after sorting ---");
 display(ranFile);
 ranFile.close();
 }

 class Item //----- inner class simulates "records" -----------
 { int id; // Item class contains 3 data fields
 String name; // which will be written into and
 double price; // read from the random access file

 final static int NAMELENGTH = 20;
 final static int RECORDSIZE = NAMELENGTH*2 + 12;
 // constants used to calculate SEEK values

 void readFromFile(RandomAccessFile ranFile, long recordNum)
 //---
 // Reads one record from ranFile, which must already be open
 // Reads each field - id, price, name – use TRIM to remove
 // padding spaces. IOExceptions are detected and reported
 //---
 { try
 { ranFile.seek(recordNum * RECORDSIZE);
 id = ranFile.readInt();
 price = ranFile.readDouble();
 StringBuffer nameBuffer = new StringBuffer(Item.NAMELENGTH);
 nameBuffer.setLength(NAMELENGTH);
 for (int c = 0; c < NAMELENGTH; c++)
 { nameBuffer.setCharAt(c, ranFile.readChar());
 }
 name = nameBuffer.toString().trim();
 }
 catch(IOException exc)
 { System.out.println("While reading record # " + recordNum);
 System.out.println(exc.toString());
 }
 }

APPENDIX 2

© International Baccalaureate Organization 2004 107

 void writeToFile(RandomAccessFile ranFile, long recordNum)
 //---
 // Writes one record into ranFile, which must already be open
 // IOExceptions are detected and reported
 //---
 { try
 { ranFile.seek(recordNum * RECORDSIZE);
 ranFile.writeInt(id);
 ranFile.writeDouble(price);
 ranFile.writeChars(setLength(name,NAMELENGTH));
 }
 catch(IOException exc)
 { System.out.println("While writing " + exc.toString()); }
 }

 String setLength(String s,int len)
 //---
 // Forces length of string to a specific value
 // Necessary before writing into a random-access file
 //---
 { StringBuffer sb = new StringBuffer(s);
 sb.setLength(len);
 return sb.toString();
 }
 } //---- end of Item class -----------------

 void create(RandomAccessFile ranFile) throws IOException
 //---
 // Puts records into ranFile, which must already be open
 //---
 { Item thisRec = new Item();
 for (int c=0; c < 2; c++)
 { thisRec.id = inputInt();
 thisRec.name = input();
 thisRec.price = inputDouble();
 thisRec.writeToFile(ranFile,c);
 }
 }

 void display(RandomAccessFile ranFile)
 //---
 // Reads all records from ranFile and prints the fields
 //---
 { try
 { long recordCount = ranFile.length() / Item.RECORDSIZE;
 Item thisRec = new Item();
 for (int c=0; c < recordCount; c++)
 { thisRec.readFromFile(ranFile, c);
 System.out.println(thisRec.id + ":" + thisRec.name
 + "=" + thisRec.price);
 }
 }
 catch (IOException exc)
 { System.out.println(exc.toString());}
 }

APPENDIX 2

108 © International Baccalaureate Organization 2004

 void sort(RandomAccessFile ranFile)
 //---
 // Bubble sort ranFile, sorting name fields in ascending order
 //---
 { try
 { long recordCount = ranFile.length() / Item.RECORDSIZE;
 Item thisRec = new Item();
 Item nextRec = new Item();
 for (int pass = 0; pass < recordCount; pass++)
 { for (int pos = 0; pos < recordCount-1; pos++)
 { thisRec.readFromFile(ranFile,pos);
 nextRec.readFromFile(ranFile,pos+1);
 if (thisRec.name.compareTo(nextRec.name)>0)
 { nextRec.writeToFile(ranFile,pos);
 thisRec.writeToFile(ranFile,pos+1);
 }
 }
 }
 }
 catch (IOException exc)
 { System.out.println(exc.toString());}
 }

//--
//---- IBIO - include simplified input and output methods ----
//--
}

APPENDIX 2

© International Baccalaureate Organization 2004 109

//---
// FactorTree sample algorithm – generates a prime-factor tree
// This algorithm is for HL candidates only, as binary trees
// do not appear in the SL syllabus.
//---
public class FactorTree
{ public static void main(String[] args)
 { new FactorTree();}

 class Node // Use an "inner class" as a
 { int data; // Data-Structure similar to a
 Node leftChild; // RECORD or STRUC in
 Node rightChild; // traditional HL languages
 }

 public FactorTree()
 { int number;
 Node root = null;
 number = inputInt("Type an integer:");
 if (number > 2)
 { root = makeTree(number);
 output("The prime factors are");
 showFactors(root);
 }
 output("-----------------");
 outline(root,"");
 input("");
 }

 Node makeTree(int number) // Recursively create factor tree
 { Node temp = new Node(); // creates a Node (allocates memory)
 temp.leftChild = null;
 temp.rightChild = null;
 temp.data = number;
 int count = 1;
 int fac = 0;
 while (count*count <= number)
 { if ((number % count) == 0)
 { fac = count; }
 count = count + 1;
 }
 if (fac > 1)
 { temp.leftChild = makeTree(fac);
 temp.rightChild = makeTree(number / fac);
 }
 return temp;
 }

APPENDIX 2

110 © International Baccalaureate Organization 2004

 void showFactors(Node here)
 { if (here == null) { output("null"); return;}
 if ((here.leftChild == null) && (here.rightChild == null))
 { output(here.data);
 }
 else
 { showFactors(here.leftChild);
 showFactors(here.rightChild);
 }
 }

void outline(Node here,String indent) // Pre-order traversal prints
 { output(indent + here.data); // tree in "outline" format
 if (here.leftChild != null)
 {outline(here.leftChild, indent + " ");}
 if (here.rightChild != null)
 {outline(here.rightChild, indent + " ");}

 }

//--
//---- IBIO - include simplified input and output methods ----
//--
}

APPENDIX 2

© International Baccalaureate Organization 2004 111

//--
// This Calendar class is used by a company for scheduling meetings,
// deadlines, deliveries, etc. All functions will accept dates in
// a variety of formats ("December 25, 2002" or "25 Dec 02" or
// "12/25/2002")
// but results are always returned in the format "dd MMM yyyy EEE",
// e.g. "01 Jul 1998 Wed". This is also accepted for parameters.
//--

import java.util.*;
import java.text.*;

public class Calendar
{ private static final long ONE_DAY = (long)24*60*60*1000;

 private static final SimpleDateFormat dateFormatter =
 new SimpleDateFormat("dd MMM yyyy EEE");

 private static final String holidays[] =
 {"01 Jan","01 Apr","01 May","23 Aug","25 Dec","xxxxxx"};

 public static String normalDate(String date)
 //--
 // Determines the day of the week (Mon, Tue, Wed, ...) and
 // returns DATE in the standard format dd MMM yyyy EEE
 // For example, normalDate("4/1/2003") --> "01 Apr 2003 Tue"
 // Returns an empty string "" if DATE is not valid.
 //--
 { try{Date df = new Date(date);
 return normalDate(df);}
 catch(Exception e){return "";}
 }

 private static String normalDate(Date df)
 { try{return dateFormatter.format(df);}
 catch(Exception e){return "";}
 }

 public static int isWorkDay(String check)
 //--
 // Calls NORMALDATE, to produce dd MMM yyyy EEE. If WWW is
 // "Sat" or "Sun", the function returns 0 (false).
 // Otherwise, it consults a calendar file to check for
 // holidays, returning 1 for a workday, 0 for a holiday or
 // weekend, and error code -1 if CHECK is not a valid Date.
 //--
 { String d;
 try { d = normalDate(check); }
 catch (Exception e) { return -1; }

 String target = d.substring(0,6);
 String weekday = d.substring(12,15);
 int workday = 1;
 if (weekday.equals("Sat") || weekday.equals("Sun"))
 { workday = 0; }
 else
 { int c = 0;

APPENDIX 2

112 © International Baccalaureate Organization 2004

 while (c<5)
 { if (target.equals(holidays[c]))
 { workday = 0; }
 c = c+1;
 }
 }
 return workday;
 }

 public static String nextDay(String date)
 //--
 // Accepts DATE in various formats, returns the next date in
 // standard format dd MMM yyyy EEE. Returns an empty string
 // if DATE is not valid (e.g. 1998.37.58)
 // This correctly accounts for end of the month, end of year,
 // leap years, etc. For example:
 // NEXTDAY("28 Feb 1998 Sat") ----> "01 Mar 1998 Sun"
 // Returns an empty string if DATE is not valid.
 //--
 { return normalDate(new Date(new Date(date).getTime() + ONE_DAY));
 }

 public static int daysBetween(String first,String second)
 //--
 // Counts the number of days between two dates, including the
 // ends. If FIRST is after SECOND, returns a negative number.
 // IF FIRST and SECOND are the same date, returns 1.
 // If FIRST or SECOND are not valid, returns error code 0
 //--
 { try
 {Date d1 = new Date(first);
 Date d2 = new Date(second);
 return (int)((long)(d2.getTime() - d1.getTime()) / ONE_DAY);
 }
 catch(Exception exc)
 { return 0; }
 }

 public static String today()
 //--
 // Returns today's date in standard format dd MMM yyyy EEE
 //--
 { try
 { Date now = new Date();
 return normalDate(
 new Date(now.getYear(),now.getMonth(),now.getDate()));
 }
 catch (Exception exc)
 { return ""; }
 }
}

APPENDIX 2

© International Baccalaureate Organization 2004 113

//--
// By providing PUBLIC STATIC Methods, another class can use
// these methods without instantiating an object, providing similar
// functionality to traditional library procedures. Reusability
// and reliability are improved by careful exception handling.
// In an exam question, only the method headers and comments need be
// provided – candidates do not need to know HOW the methods work.
//--

APPENDIX 2

114 © International Baccalaureate Organization 2004

//---
// WORKDAYS sample algorithm – inputs two dates, counts the number
// of workdays between the two dates, including the ends.
// It uses the Calendar class.
//---

// uses Calendar class, see previous pages
public class WorkDays
{ public static void main(String[] args)
 { new WorkDays();}

 public WorkDays()
 { String first,last,temp,savedFirst;
 int between;
 output("This algorithm counts the workdays between two dates.");

 first = "";
 while (first.equals("")) // bad date returns empty string
 { output("Type in the first date:"); // Loop until good date
 first = input();
 first = Calendar.normalDate(first);
 }

 last = "";
 while (last.equals("")) // bad date returns empty string
 { output("Type in the last date"); // loops until good date
 last = input();
 last = Calendar.normalDate(last);
 }
 between = Calendar.daysBetween(first,last);
 if (between < 0)
 { temp = first; // Swap FIRST and LAST
 first = last;
 last = temp;
 }
 savedFirst = first; // save for output message
 between = Calendar.isWorkDay(first);
 output(first);
 while (!first.equals(last)) // Don't compare Strings with ==
 { first = Calendar.nextDay(first);
 between = between + Calendar.isWorkDay(first);
 output(first);
 }
 output(between + " workdays between " + savedFirst + " and " + last
);
 }

//--
//---- IBIO - include simplified input and output methods ----
//--
}

APPENDIX 2

© International Baccalaureate Organization 2004 115

//----- Sample Output ------------------------------------
/* This algorithm counts the workdays between two dates.
 Type in the first date:
 12/21/2002
 Type in the last date
 12/31/2002
 21 Dec 2002 Sat
 22 Dec 2002 Sun
 23 Dec 2002 Mon
 24 Dec 2002 Tue
 25 Dec 2002 Wed
 26 Dec 2002 Thu
 27 Dec 2002 Fri
 28 Dec 2002 Sat
 29 Dec 2002 Sun
 30 Dec 2002 Mon
 31 Dec 2002 Tue
 6 workdays between 21 Dec 2002 Sat and 31 Dec 2002 Tue */
//----- end Sample Output -------------------------------

APPENDIX 2

116 © International Baccalaureate Organization 2004

public class TestIBIO
{ public static void main(String[] args)
 { new TestIBIO();}

 public TestIBIO()
 { String theString = inputString("String:");
 if (theString.equals("1"))
 { output("Yes"); }
 else
 { output(theString); }

 char theChar = inputChar("char:");
 if (theChar == '2')
 { output("Yes"); }
 else
 { output(theChar); }

 byte theByte = inputByte("byte:");
 if (theByte == 3)
 { output("Yes"); }
 else
 { output(theByte); }

 int theInt = inputInt("int:");
 if (theInt == 4)
 { output("Yes"); }
 else
 { output(theInt); }

 long theLong = inputLong("long:");
 if (theLong == 5)
 { output("Yes"); }
 else
 { output(theLong); }

 double theDouble = inputDouble("double:");
 if (theDouble == 6)
 { output("Yes"); }
 else
 { output(theDouble); }

 boolean theBoolean = inputBoolean("boolean:");
 if (theBoolean == true)
 { output("Yes"); }
 else
 { output(theBoolean); }

 input("-- press [enter] to quit --");

 }
//--
//---- IBIO - include simplified input and output methods ----
//--
}

© International Baccalaureate Organization 2004 117

APPENDIX 3

Systems flowchart symbols
Action or process Input or output device

(description inside)

Annotation Lines crossing Lines joining

Data flow

Document

Tape Disk Online storage

Communication link (two-
way unless indicated)

118 © International Baccalaureate Organization 2004

APPENDIX 4

Logic gate symbols

	INTRODUCTION
	NATURE OF THE SUBJECT
	RESOURCES
	CURRICULUM MODEL
	AIMS
	OBJECTIVES
	OBJECTIVES AND ACTION VERBS
	SYLLABUS OUTLINE
	SYLLABUS DETAILS
	THE CASE STUDY
	ASSESSMENT OUTLINE
	ASSESSMENT DETAILS
	MASTERY
	APPENDIX 1
	APPENDIX 2
	APPENDIX 3
	APPENDIX 4
	Blank Page
	Blank Page

