DP Physics (last assessment 2024)

Test builder »

Question 21M.2.SL.TZ1.4

Select a Test
Date May 2021 Marks available [Maximum mark: 6] Reference code 21M.2.SL.TZ1.4
Level SL Paper 2 Time zone TZ1
Command term Calculate, Derive, Explain Question number 4 Adapted from N/A
4.
[Maximum mark: 6]
21M.2.SL.TZ1.4

A planet orbits at a distance d from a star. The power emitted by the star is P. The total surface area of the planet is A.

(a.i)

Explain why the power incident on the planet is

                                                                P4πd2×A4.

[2]

Markscheme

P4πd2 is the power received by the planet/at a distance d «from star» 

A4 is the projected area/cross sectional area of the planet 

 

(a.ii)

The albedo of the planet is αp. The equilibrium surface temperature of the planet is T. Derive the expression

T=P(1-αp)16πd2eσ4

where e is the emissivity of the planet.

[2]

Markscheme

use of eσAT4 OR P4πd2×A4×(1-αp) 

with correct manipulation to show the result

 

(b)

On average, the Moon is the same distance from the Sun as the Earth. The Moon can be assumed to have an emissivity e = 1 and an albedo αM = 0.13. The solar constant is 1.36 × 103 W m−2. Calculate the surface temperature of the Moon.

[2]

Markscheme

1.36×103×0.874×5.67×10-84 

T = 268.75 «K» ≅ 270 «K»