Syllabus sections » |
1.1 – Measurements in physics
Description
Nature of science:
Common terminology: Since the 18th century, scientists have sought to establish common systems of measurements to facilitate international collaboration across science disciplines and ensure replication and comparability of experimental findings. (1.6)
Improvement in instrumentation: An improvement in apparatus and instrumentation, such as using the transition of cesium-133 atoms for atomic clocks, has led to more refined definitions of standard units. (1.8)
Certainty: Although scientists are perceived as working towards finding “exact” answers, the unavoidable uncertainty in any measurement always exists. (3.6)
Understandings:
- Fundamental and derived SI units
- Scientific notation and metric multipliers
- Significant figures
- Orders of magnitude
- Estimation
Applications and skills:
- Using SI units in the correct format for all required measurements, final answers to calculations and presentation of raw and processed data
- Using scientific notation and metric multipliers
- Quoting and comparing ratios, values and approximations to the nearest order of magnitude
- Estimating quantities to an appropriate number of significant figures
Guidance:
- SI unit usage and information can be found at the website of Bureau International des Poids et Mesures
- Students will not need to know the definition of SI units except where explicitly stated in the relevant topics in this guide
- Candela is not a required SI unit for this course
- Guidance on any use of non-SI units such as eV, MeV c-2, ly and pc will be provided in the relevant topics in this guide
- Further guidance on how scientific notation and significant figures are used in examinations can be found in the Teacher support material
Data booklet reference:
- Metric (SI) multipliers can be found on page 5 of the physics data booklet
International-mindedness:
- Scientific collaboration is able to be truly global without the restrictions of national borders or language due to the agreed standards for data representation
Theory of knowledge:
- What has influenced the common language used in science? To what extent does having a common standard approach to measurement facilitate the sharing of knowledge in physics?
Utilization:
- This topic is able to be integrated into any topic taught at the start of the course and is important to all topics
- Students studying more than one group 4 subject will be able to use these skills across all subjects
- See Mathematical studies SL sub-topics 1.2–1.4
Aims:
- Aim 2 and 3: this is an essential area of knowledge that allows scientists to collaborate across the globe
- Aim 4 and 5: a common approach to expressing results of analysis, evaluation and synthesis of scientific information enables greater sharing and collaboration
Directly related questions
- 20N.1.SL.TZ0.1: Which quantity has the same units as those for energy stored per unit volume? A. Density B. ...
- 20N.1.SL.TZ0.1: Which quantity has the same units as those for energy stored per unit volume? A. Density B. ...
-
21M.2.SL.TZ1.1d.ii:
Player B intercepts the ball when it is at its peak height. Player B holds a paddle (racket) stationary and vertical. The ball is in contact with the paddle for 0.010 s. Assume the collision is elastic.
Calculate the average force exerted by the ball on the paddle. State your answer to an appropriate number of significant figures.
-
21M.2.SL.TZ1.1d.ii:
Player B intercepts the ball when it is at its peak height. Player B holds a paddle (racket) stationary and vertical. The ball is in contact with the paddle for 0.010 s. Assume the collision is elastic.
Calculate the average force exerted by the ball on the paddle. State your answer to an appropriate number of significant figures.
-
21M.2.SL.TZ1.d.ii:
Player B intercepts the ball when it is at its peak height. Player B holds a paddle (racket) stationary and vertical. The ball is in contact with the paddle for 0.010 s. Assume the collision is elastic.
Calculate the average force exerted by the ball on the paddle. State your answer to an appropriate number of significant figures.
- 18M.1.SL.TZ2.10: Which is a unit of force? A. J m B. J m–1 C. J m s–1 D. J m–1 s
- 18M.1.SL.TZ2.10: Which is a unit of force? A. J m B. J m–1 C. J m s–1 D. J m–1 s
- 18M.1.SL.TZ2.1: What is the best estimate for the diameter of a helium nucleus? A. 10–21 m B. 10–18...
- 18M.1.SL.TZ2.1: What is the best estimate for the diameter of a helium nucleus? A. 10–21 m B. 10–18...
-
18N.2.HL.TZ0.4b:
The speed of sound c for longitudinal waves in air is given by
where ρ is the density of the air and K is a constant.
A student measures f to be 120 Hz when the length of the pipe is 1.4 m. The density of the air in the pipe is 1.3 kg m–3. Determine the value of K for air. State your answer with the appropriate fundamental (SI) unit.
-
18N.2.HL.TZ0.4b:
The speed of sound c for longitudinal waves in air is given by
where ρ is the density of the air and K is a constant.
A student measures f to be 120 Hz when the length of the pipe is 1.4 m. The density of the air in the pipe is 1.3 kg m–3. Determine the value of K for air. State your answer with the appropriate fundamental (SI) unit.
-
18N.2.HL.TZ0.b:
The speed of sound c for longitudinal waves in air is given by
where ρ is the density of the air and K is a constant.
A student measures f to be 120 Hz when the length of the pipe is 1.4 m. The density of the air in the pipe is 1.3 kg m–3. Determine the value of K for air. State your answer with the appropriate fundamental (SI) unit.
-
18N.2.HL.TZ0.2a:
Each rod is to have a resistance no greater than 0.10 Ω. Calculate, in m, the minimum radius of each rod. Give your answer to an appropriate number of significant figures.
-
18N.2.HL.TZ0.2a:
Each rod is to have a resistance no greater than 0.10 Ω. Calculate, in m, the minimum radius of each rod. Give your answer to an appropriate number of significant figures.
-
18N.2.HL.TZ0.a:
Each rod is to have a resistance no greater than 0.10 Ω. Calculate, in m, the minimum radius of each rod. Give your answer to an appropriate number of significant figures.
-
18N.2.SL.TZ0.4b:
The speed of sound c for longitudinal waves in air is given by
where ρ is the density of the air and K is a constant.
A student measures f to be 120 Hz when the length of the pipe is 1.4 m. The density of the air in the pipe is 1.3 kg m–3. Determine, in kg m–1 s–2, the value of K for air.
-
18N.2.SL.TZ0.4b:
The speed of sound c for longitudinal waves in air is given by
where ρ is the density of the air and K is a constant.
A student measures f to be 120 Hz when the length of the pipe is 1.4 m. The density of the air in the pipe is 1.3 kg m–3. Determine, in kg m–1 s–2, the value of K for air.
-
18N.2.SL.TZ0.b:
The speed of sound c for longitudinal waves in air is given by
where ρ is the density of the air and K is a constant.
A student measures f to be 120 Hz when the length of the pipe is 1.4 m. The density of the air in the pipe is 1.3 kg m–3. Determine, in kg m–1 s–2, the value of K for air.
- 18N.3.SL.TZ0.2b: Outline whether the value of Lv calculated in this experiment is expected to be larger or smaller...
- 18N.3.SL.TZ0.2b: Outline whether the value of Lv calculated in this experiment is expected to be larger or smaller...
- 18N.3.SL.TZ0.b: Outline whether the value of Lv calculated in this experiment is expected to be larger or smaller...
- 18N.3.SL.TZ0.2a: Outline why, during the experiment, V and I should be kept constant.
- 18N.3.SL.TZ0.2a: Outline why, during the experiment, V and I should be kept constant.
- 18N.3.SL.TZ0.a: Outline why, during the experiment, V and I should be kept constant.
-
19N.3.SL.TZ0.2a(i):
Estimate the resistivity of the material of the wire. Give your answer to an appropriate number of significant figures.
-
19N.3.SL.TZ0.2a(i):
Estimate the resistivity of the material of the wire. Give your answer to an appropriate number of significant figures.
-
19N.3.SL.TZ0.a(i):
Estimate the resistivity of the material of the wire. Give your answer to an appropriate number of significant figures.
-
22N.2.HL.TZ0.3b.i:
Determine the fundamental SI unit for a.
-
22N.2.HL.TZ0.3b.i:
Determine the fundamental SI unit for a.
-
22N.2.HL.TZ0.b.i:
Determine the fundamental SI unit for a.
- 17N.1.SL.TZ0.1: How many significant figures are there in the number 0.0450? A. 2 B. 3 C. 4 D. 5
- 17N.1.SL.TZ0.1: How many significant figures are there in the number 0.0450? A. 2 B. 3 C. 4 D. 5
- 17N.1.HL.TZ0.1: What is a correct value for the charge on an electron? A. 1.60 x 10–12 μC B. 1.60 x 10–15...
- 17N.1.HL.TZ0.1: What is a correct value for the charge on an electron? A. 1.60 x 10–12 μC B. 1.60 x 10–15...
-
18M.3.SL.TZ1.1b.ii:
A student forms a hypothesis that the period of one oscillation P is given by:
where K is a constant.
Determine the value of K using the point for which B = 0.005 T.
State the uncertainty in K to an appropriate number of significant figures.
-
18M.3.SL.TZ1.1b.ii:
A student forms a hypothesis that the period of one oscillation P is given by:
where K is a constant.
Determine the value of K using the point for which B = 0.005 T.
State the uncertainty in K to an appropriate number of significant figures.
-
18M.3.SL.TZ1.b.ii:
A student forms a hypothesis that the period of one oscillation P is given by:
where K is a constant.
Determine the value of K using the point for which B = 0.005 T.
State the uncertainty in K to an appropriate number of significant figures.
-
18M.3.SL.TZ2.2a:
This relationship can also be written as follows.
Show that .
-
18M.3.SL.TZ2.2a:
This relationship can also be written as follows.
Show that .
-
18M.3.SL.TZ2.a:
This relationship can also be written as follows.
Show that .
-
18M.3.SL.TZ2.2b.i:
Estimate C.
-
18M.3.SL.TZ2.2b.i:
Estimate C.
-
18M.3.SL.TZ2.b.i:
Estimate C.
-
18M.3.SL.TZ2.2b.ii:
Determine P, to the correct number of significant figures including its unit.
-
18M.3.SL.TZ2.2b.ii:
Determine P, to the correct number of significant figures including its unit.
-
18M.3.SL.TZ2.b.ii:
Determine P, to the correct number of significant figures including its unit.
-
18M.3.SL.TZ2.2c:
Explain the disadvantage that a graph of I versus has for the analysis in (b)(i) and (b)(ii).
-
18M.3.SL.TZ2.2c:
Explain the disadvantage that a graph of I versus has for the analysis in (b)(i) and (b)(ii).
-
18M.3.SL.TZ2.c:
Explain the disadvantage that a graph of I versus has for the analysis in (b)(i) and (b)(ii).
- 18N.1.SL.TZ0.1: What is the unit of power expressed in fundamental SI units? A. kg m s–2 B. ...
- 18N.1.SL.TZ0.1: What is the unit of power expressed in fundamental SI units? A. kg m s–2 B. ...
-
18N.1.SL.TZ0.15:
The graphs show the variation of the displacement y of a medium with distance and with time t for a travelling wave.
What is the speed of the wave?
A. 0.6 m s–1
B. 0.8 m s–1
C. 600 m s–1
D. 800 m s–1
-
18N.1.SL.TZ0.15:
The graphs show the variation of the displacement y of a medium with distance and with time t for a travelling wave.
What is the speed of the wave?
A. 0.6 m s–1
B. 0.8 m s–1
C. 600 m s–1
D. 800 m s–1
-
18N.2.SL.TZ0.2a:
Each rod is to have a resistance no greater than 0.10 Ω. Calculate, in m, the minimum radius of each rod. Give your answer to an appropriate number of significant figures.
-
18N.2.SL.TZ0.2a:
Each rod is to have a resistance no greater than 0.10 Ω. Calculate, in m, the minimum radius of each rod. Give your answer to an appropriate number of significant figures.
-
18N.2.SL.TZ0.a:
Each rod is to have a resistance no greater than 0.10 Ω. Calculate, in m, the minimum radius of each rod. Give your answer to an appropriate number of significant figures.
-
18N.3.SL.TZ0.2c:
A student suggests that to get a more accurate value of Lv the experiment should be performed twice using different heating rates. With voltage and current V1, I1 the mass of water that vaporized in time t is m1. With voltage and current V2, I2 the mass of water that vaporized in time t is m2. The student now uses the expression
to calculate Lv. Suggest, by reference to heat losses, why this is an improvement.
-
18N.3.SL.TZ0.2c:
A student suggests that to get a more accurate value of Lv the experiment should be performed twice using different heating rates. With voltage and current V1, I1 the mass of water that vaporized in time t is m1. With voltage and current V2, I2 the mass of water that vaporized in time t is m2. The student now uses the expression
to calculate Lv. Suggest, by reference to heat losses, why this is an improvement.
-
18N.3.SL.TZ0.c:
A student suggests that to get a more accurate value of Lv the experiment should be performed twice using different heating rates. With voltage and current V1, I1 the mass of water that vaporized in time t is m1. With voltage and current V2, I2 the mass of water that vaporized in time t is m2. The student now uses the expression
to calculate Lv. Suggest, by reference to heat losses, why this is an improvement.
-
19M.1.SL.TZ1.2:
A student models the relationship between the pressure p of a gas and its temperature T as p = + T.
The units of p are pascal and the units of T are kelvin. What are the fundamental SI units of and ?
-
19M.1.SL.TZ1.2:
A student models the relationship between the pressure p of a gas and its temperature T as p = + T.
The units of p are pascal and the units of T are kelvin. What are the fundamental SI units of and ?
-
19M.3.SL.TZ2.2bi:
Determine the fundamental SI unit for k.
-
19M.3.SL.TZ2.2bi:
Determine the fundamental SI unit for k.
-
19M.3.SL.TZ2.bi:
Determine the fundamental SI unit for k.
-
19M.1.SL.TZ2.5:
An object has a weight of 6.10 × 102 N. What is the change in gravitational potential energy of the object when it moves through 8.0 m vertically?
A. 5 kJ
B. 4.9 kJ
C. 4.88 kJ
D. 4.880 kJ
-
19M.1.SL.TZ2.5:
An object has a weight of 6.10 × 102 N. What is the change in gravitational potential energy of the object when it moves through 8.0 m vertically?
A. 5 kJ
B. 4.9 kJ
C. 4.88 kJ
D. 4.880 kJ
- 19M.1.SL.TZ2.2: What is the unit of electrical potential difference expressed in fundamental SI units? A. kg m...
- 19M.1.SL.TZ2.2: What is the unit of electrical potential difference expressed in fundamental SI units? A. kg m...
-
19M.3.SL.TZ1.2a:
Suggest why the student’s data supports the theoretical prediction.
-
19M.3.SL.TZ1.2a:
Suggest why the student’s data supports the theoretical prediction.
-
19M.3.SL.TZ1.a:
Suggest why the student’s data supports the theoretical prediction.
- 19N.1.SL.TZ0.1: Which quantity has the fundamental SI units of kg m–1 s–2? A. EnergyB. ForceC. MomentumD. Pressure
- 19N.1.SL.TZ0.1: Which quantity has the fundamental SI units of kg m–1 s–2? A. EnergyB. ForceC. MomentumD. Pressure
- 19N.1.SL.TZ0.28: What are the units of specific energy and energy density?
- 19N.1.SL.TZ0.28: What are the units of specific energy and energy density?
- 19N.3.SL.TZ0.1a: Suggest, by reference to the graph, why it is unlikely that the relationship between T and v is...
- 19N.3.SL.TZ0.1a: Suggest, by reference to the graph, why it is unlikely that the relationship between T and v is...
- 19N.3.SL.TZ0.a: Suggest, by reference to the graph, why it is unlikely that the relationship between T and v is...
- 19N.3.SL.TZ0.1c: The student hypothesizes that the relationship between T and v is T = a + bv2, where a and b are...
- 19N.3.SL.TZ0.1c: The student hypothesizes that the relationship between T and v is T = a + bv2, where a and b are...
- 19N.3.SL.TZ0.c: The student hypothesizes that the relationship between T and v is T = a + bv2, where a and b are...
-
20N.3.SL.TZ0.1b(ii):
Identify the fundamental units of .
-
20N.3.SL.TZ0.1b(ii):
Identify the fundamental units of .
-
20N.3.SL.TZ0.b(ii):
Identify the fundamental units of .
-
20N.2.SL.TZ0.3a(ii):
Estimate the specific heat capacity of the oil in its liquid phase. State an appropriate unit for your answer.
-
20N.2.SL.TZ0.3a(ii):
Estimate the specific heat capacity of the oil in its liquid phase. State an appropriate unit for your answer.
-
20N.2.SL.TZ0.a(ii):
Estimate the specific heat capacity of the oil in its liquid phase. State an appropriate unit for your answer.
-
21M.2.HL.TZ2.3a:
The charge per unit area on the surface of the wall is σ. It can be shown that the electric field strength E due to the charge on the wall is given by the equation
.
Demonstrate that the units of the quantities in this equation are consistent.
-
21M.2.HL.TZ2.3a:
The charge per unit area on the surface of the wall is σ. It can be shown that the electric field strength E due to the charge on the wall is given by the equation
.
Demonstrate that the units of the quantities in this equation are consistent.
-
21M.2.HL.TZ2.a:
The charge per unit area on the surface of the wall is σ. It can be shown that the electric field strength E due to the charge on the wall is given by the equation
.
Demonstrate that the units of the quantities in this equation are consistent.
-
21M.2.HL.TZ2.10a:
Calculate, for the surface of , the gravitational field strength gIo due to the mass of . State an appropriate unit for your answer.
-
21M.2.HL.TZ2.10a:
Calculate, for the surface of , the gravitational field strength gIo due to the mass of . State an appropriate unit for your answer.
-
21M.2.HL.TZ2.a:
Calculate, for the surface of , the gravitational field strength gIo due to the mass of . State an appropriate unit for your answer.
- 21M.1.HL.TZ1.31: Which is a correct unit for gravitational potential? A. m2 s−2 B. J kg C. m s−2 D. N m−1 kg−1
- 21M.1.HL.TZ1.31: Which is a correct unit for gravitational potential? A. m2 s−2 B. J kg C. m s−2 D. N m−1 kg−1
-
21M.1.SL.TZ2.2:
What is the unit of power expressed in fundamental SI units?
A.
B.
C.
D.
-
21M.1.SL.TZ2.2:
What is the unit of power expressed in fundamental SI units?
A.
B.
C.
D.
-
21M.2.SL.TZ2.1d:
The player kicks the ball again. It rolls along the ground without sliding with a horizontal velocity of . The radius of the ball is . Calculate the angular velocity of the ball. State an appropriate SI unit for your answer.
-
21M.2.SL.TZ2.1d:
The player kicks the ball again. It rolls along the ground without sliding with a horizontal velocity of . The radius of the ball is . Calculate the angular velocity of the ball. State an appropriate SI unit for your answer.
-
21M.2.SL.TZ2.d:
The player kicks the ball again. It rolls along the ground without sliding with a horizontal velocity of . The radius of the ball is . Calculate the angular velocity of the ball. State an appropriate SI unit for your answer.
-
21M.2.SL.TZ2.3a:
The charge per unit area on the surface of the wall is σ. It can be shown that the electric field strength E due to the charge on the wall is given by the equation
.
Demonstrate that the units of the quantities in this equation are consistent.
-
21M.2.SL.TZ2.3a:
The charge per unit area on the surface of the wall is σ. It can be shown that the electric field strength E due to the charge on the wall is given by the equation
.
Demonstrate that the units of the quantities in this equation are consistent.
-
21M.2.SL.TZ2.a:
The charge per unit area on the surface of the wall is σ. It can be shown that the electric field strength E due to the charge on the wall is given by the equation
.
Demonstrate that the units of the quantities in this equation are consistent.
-
21M.2.SL.TZ2.3c:
The centre of the ball, still carrying a charge of , is now placed from a point charge Q. The charge on the ball acts as a point charge at the centre of the ball.
P is the point on the line joining the charges where the electric field strength is zero.
The distance PQ is .Calculate the charge on Q. State your answer to an appropriate number of significant figures.
-
21M.2.SL.TZ2.3c:
The centre of the ball, still carrying a charge of , is now placed from a point charge Q. The charge on the ball acts as a point charge at the centre of the ball.
P is the point on the line joining the charges where the electric field strength is zero.
The distance PQ is .Calculate the charge on Q. State your answer to an appropriate number of significant figures.
-
21M.2.SL.TZ2.c:
The centre of the ball, still carrying a charge of , is now placed from a point charge Q. The charge on the ball acts as a point charge at the centre of the ball.
P is the point on the line joining the charges where the electric field strength is zero.
The distance PQ is .Calculate the charge on Q. State your answer to an appropriate number of significant figures.
-
22M.2.HL.TZ2.8a.ii:
State the fundamental SI unit for your answer to (a)(i).
-
22M.2.HL.TZ2.8a.ii:
State the fundamental SI unit for your answer to (a)(i).
-
22M.2.HL.TZ2.a.ii:
State the fundamental SI unit for your answer to (a)(i).
-
22M.2.HL.TZ2.9b:
Estimate, using the result in (a)(iii), the volume of a tin-118 nucleus. State your answer to an appropriate number of significant figures.
-
22M.2.HL.TZ2.9b:
Estimate, using the result in (a)(iii), the volume of a tin-118 nucleus. State your answer to an appropriate number of significant figures.
-
22M.2.HL.TZ2.b:
Estimate, using the result in (a)(iii), the volume of a tin-118 nucleus. State your answer to an appropriate number of significant figures.
- 22M.1.SL.TZ1.1: What is the order of magnitude of the wavelength of visible light? A. 10−10 m B. 10−7 m C. ...
- 22M.1.SL.TZ1.1: What is the order of magnitude of the wavelength of visible light? A. 10−10 m B. 10−7 m C. ...
-
22M.1.HL.TZ1.1:
The intensity of a wave can be defined as the energy per unit area per unit time. What is the unit of intensity expressed in fundamental SI units?
A. kg m−2 s−1
B. kg m2 s−3
C. kg s−2
D. kg s−3
-
22M.1.HL.TZ1.1:
The intensity of a wave can be defined as the energy per unit area per unit time. What is the unit of intensity expressed in fundamental SI units?
A. kg m−2 s−1
B. kg m2 s−3
C. kg s−2
D. kg s−3
-
22M.2.SL.TZ1.1c.ii:
The radius of the pulley is 2.5 cm. Calculate the angular speed of rotation of the pulley as the load hits the floor. State your answer to an appropriate number of significant figures.
-
22M.2.SL.TZ1.1c.ii:
The radius of the pulley is 2.5 cm. Calculate the angular speed of rotation of the pulley as the load hits the floor. State your answer to an appropriate number of significant figures.
-
22M.2.SL.TZ1.c.ii:
The radius of the pulley is 2.5 cm. Calculate the angular speed of rotation of the pulley as the load hits the floor. State your answer to an appropriate number of significant figures.
-
22M.2.SL.TZ1.2a:
Estimate the power input to the heating element. State an appropriate unit for your answer.
-
22M.2.SL.TZ1.2a:
Estimate the power input to the heating element. State an appropriate unit for your answer.
-
22M.2.SL.TZ1.a:
Estimate the power input to the heating element. State an appropriate unit for your answer.
-
22N.2.SL.TZ0.1c.i:
Determine the energy transferred to the air during the first 3.0 s of motion. State your answer to an appropriate number of significant figures.
-
22N.2.SL.TZ0.1c.i:
Determine the energy transferred to the air during the first 3.0 s of motion. State your answer to an appropriate number of significant figures.
-
22N.2.SL.TZ0.c.i:
Determine the energy transferred to the air during the first 3.0 s of motion. State your answer to an appropriate number of significant figures.
-
22N.2.SL.TZ0.3b.i:
Determine the fundamental SI unit for a.
-
22N.2.SL.TZ0.3b.i:
Determine the fundamental SI unit for a.
-
22N.2.SL.TZ0.b.i:
Determine the fundamental SI unit for a.