DP Physics (first assessment 2025)

Test builder »

Question EXE.2.SL.TZ0.12

Select a Test
Date Example questions Example questions Marks available [Maximum mark: 7] Reference code EXE.2.SL.TZ0.12
Level SL Paper 2 Time zone TZ0
Command term Determine, Show that Question number 12 Adapted from N/A
12.
[Maximum mark: 7]
EXE.2.SL.TZ0.12

One of Kepler’s laws suggests that for moons that have circular orbits around a planet:

T24πr3=k

where T is the orbital period of the moon, r is the radius of its circular orbit about the planet, and k is a constant.

(a)

Show that k=1GM.

[2]

Markscheme

Equates centripetal force (with Newton’s law of gravitation mrω2=GMmr2)

OR

T=2πω ✓


Uses both equation correctly with clear re-arrangement ✓

(b)

The table gives data relating to the two moons of Mars.

 

Moon  T / hour r / Mm
Phobos 7.66 9.38
Deimos 30.4 -

 

Determine r for Deimos.

[2]

Markscheme

rDe3=TDe2rPh3TPh2 seen or correct substitution ✓

23.5 Mm ✓

(c)

 Determine the mass of Mars.

[3]

Markscheme

Converts T to 27.6 ks and converts to m from Mm ✓ 

k=7.33×10-14 «s2 m−3» ✓ 

«M=1kG» =2.04×1023 «kg» ✓ 

 

MP1 can be implicit