Structure 1.5.4—The relationship between the pressure, volume, temperature and amount of an ideal gas is shown in the ideal gas equation PV = nRT and the combined gas law P1V1T1= P2V2T2. Solve problems relating to the ideal gas equation.
Description
[N/A]Directly related questions
-
20N.1A.SL.TZ0.4:
Which volume of ethane gas, in , will produce of carbon dioxide gas when mixed with of oxygen gas, assuming the reaction goes to completion?
A.
B.
C.
D.
-
20N.1A.SL.TZ0.4:
Which volume of ethane gas, in , will produce of carbon dioxide gas when mixed with of oxygen gas, assuming the reaction goes to completion?
A.
B.
C.
D.
-
20N.1A.SL.TZ0.4:
Which volume of ethane gas, in , will produce of carbon dioxide gas when mixed with of oxygen gas, assuming the reaction goes to completion?
A.
B.
C.
D.
-
20N.1A.SL.TZ0.4:
Which volume of ethane gas, in , will produce of carbon dioxide gas when mixed with of oxygen gas, assuming the reaction goes to completion?
A.
B.
C.
D.
-
20N.1B.SL.TZ0.18a(ii):
The vapour pressure of pure ethanal at is .
Calculate the vapour pressure of ethanal above the liquid mixture at .
-
20N.1B.SL.TZ0.a(ii):
The vapour pressure of pure ethanal at is .
Calculate the vapour pressure of ethanal above the liquid mixture at .
-
20N.1B.SL.TZ0.18a(ii):
The vapour pressure of pure ethanal at is .
Calculate the vapour pressure of ethanal above the liquid mixture at .
-
20N.1B.SL.TZ0.a(ii):
The vapour pressure of pure ethanal at is .
Calculate the vapour pressure of ethanal above the liquid mixture at .
-
21M.1A.SL.TZ1.3:
What volume of oxygen, in dm3 at STP, is needed when 5.8 g of butane undergoes complete combustion?
A.
B.
C.
D.
-
21M.1A.SL.TZ1.3:
What volume of oxygen, in dm3 at STP, is needed when 5.8 g of butane undergoes complete combustion?
A.
B.
C.
D.
-
21M.1A.SL.TZ1.3:
What volume of oxygen, in dm3 at STP, is needed when 5.8 g of butane undergoes complete combustion?
A.
B.
C.
D.
-
21M.1A.SL.TZ1.3:
What volume of oxygen, in dm3 at STP, is needed when 5.8 g of butane undergoes complete combustion?
A.
B.
C.
D.
-
21M.2.SL.TZ2.1a:
Calcium carbonate is heated to produce calcium oxide, CaO.
CaCO3 (s) → CaO (s) + CO2 (g)
Calculate the volume of carbon dioxide produced at STP when 555 g of calcium carbonate decomposes. Use sections 2 and 6 of the data booklet.
-
21M.2.SL.TZ2.1a:
Calcium carbonate is heated to produce calcium oxide, CaO.
CaCO3 (s) → CaO (s) + CO2 (g)
Calculate the volume of carbon dioxide produced at STP when 555 g of calcium carbonate decomposes. Use sections 2 and 6 of the data booklet.
-
21M.2.SL.TZ2.a:
Calcium carbonate is heated to produce calcium oxide, CaO.
CaCO3 (s) → CaO (s) + CO2 (g)
Calculate the volume of carbon dioxide produced at STP when 555 g of calcium carbonate decomposes. Use sections 2 and 6 of the data booklet.
-
21M.2.SL.TZ2.1a:
Calcium carbonate is heated to produce calcium oxide, CaO.
CaCO3 (s) → CaO (s) + CO2 (g)
Calculate the volume of carbon dioxide produced at STP when 555 g of calcium carbonate decomposes. Use sections 2 and 6 of the data booklet.
-
21M.2.SL.TZ2.1a:
Calcium carbonate is heated to produce calcium oxide, CaO.
CaCO3 (s) → CaO (s) + CO2 (g)
Calculate the volume of carbon dioxide produced at STP when 555 g of calcium carbonate decomposes. Use sections 2 and 6 of the data booklet.
-
21M.2.SL.TZ2.a:
Calcium carbonate is heated to produce calcium oxide, CaO.
CaCO3 (s) → CaO (s) + CO2 (g)
Calculate the volume of carbon dioxide produced at STP when 555 g of calcium carbonate decomposes. Use sections 2 and 6 of the data booklet.
-
21M.2.SL.TZ2.1d(i):
Determine the mass, in g, of CaCO3 (s) produced by reacting 2.41 dm3 of 2.33 × 10−2 mol dm−3 of Ca(OH)2 (aq) with 0.750 dm3 of CO2 (g) at STP.
-
21M.2.SL.TZ2.1d(i):
Determine the mass, in g, of CaCO3 (s) produced by reacting 2.41 dm3 of 2.33 × 10−2 mol dm−3 of Ca(OH)2 (aq) with 0.750 dm3 of CO2 (g) at STP.
-
21M.2.SL.TZ2.d(i):
Determine the mass, in g, of CaCO3 (s) produced by reacting 2.41 dm3 of 2.33 × 10−2 mol dm−3 of Ca(OH)2 (aq) with 0.750 dm3 of CO2 (g) at STP.
-
21M.2.SL.TZ2.1d(i):
Determine the mass, in g, of CaCO3 (s) produced by reacting 2.41 dm3 of 2.33 × 10−2 mol dm−3 of Ca(OH)2 (aq) with 0.750 dm3 of CO2 (g) at STP.
-
21M.2.SL.TZ2.1d(i):
Determine the mass, in g, of CaCO3 (s) produced by reacting 2.41 dm3 of 2.33 × 10−2 mol dm−3 of Ca(OH)2 (aq) with 0.750 dm3 of CO2 (g) at STP.
-
21M.2.SL.TZ2.d(i):
Determine the mass, in g, of CaCO3 (s) produced by reacting 2.41 dm3 of 2.33 × 10−2 mol dm−3 of Ca(OH)2 (aq) with 0.750 dm3 of CO2 (g) at STP.
-
21M.2.SL.TZ2.1d(ii):
2.85 g of CaCO3 was collected in the experiment in d(i). Calculate the percentage yield of CaCO3.
(If you did not obtain an answer to d(i), use 4.00 g, but this is not the correct value.)
-
21M.2.SL.TZ2.1d(ii):
2.85 g of CaCO3 was collected in the experiment in d(i). Calculate the percentage yield of CaCO3.
(If you did not obtain an answer to d(i), use 4.00 g, but this is not the correct value.)
-
21M.2.SL.TZ2.d(ii):
2.85 g of CaCO3 was collected in the experiment in d(i). Calculate the percentage yield of CaCO3.
(If you did not obtain an answer to d(i), use 4.00 g, but this is not the correct value.)
-
21M.2.SL.TZ2.1d(ii):
2.85 g of CaCO3 was collected in the experiment in d(i). Calculate the percentage yield of CaCO3.
(If you did not obtain an answer to d(i), use 4.00 g, but this is not the correct value.)
-
21M.2.SL.TZ2.1d(ii):
2.85 g of CaCO3 was collected in the experiment in d(i). Calculate the percentage yield of CaCO3.
(If you did not obtain an answer to d(i), use 4.00 g, but this is not the correct value.)
-
21M.2.SL.TZ2.d(ii):
2.85 g of CaCO3 was collected in the experiment in d(i). Calculate the percentage yield of CaCO3.
(If you did not obtain an answer to d(i), use 4.00 g, but this is not the correct value.)
- 22M.1A.SL.TZ2.3: Which graph represents the relationship between the amount of gas, n, and the absolute...
- 22M.1A.SL.TZ2.3: Which graph represents the relationship between the amount of gas, n, and the absolute...
- 22M.1A.SL.TZ2.3: Which graph represents the relationship between the amount of gas, n, and the absolute...
- 22M.1A.SL.TZ2.3: Which graph represents the relationship between the amount of gas, n, and the absolute...