Reactivity 2.3.4—Le Châtelier’s principle enables the prediction of the qualitative effects of changes in concentration, temperature and pressure to a system at equilibrium. Apply Le Ch.telier’s principle to predict and explain responses to changes of systems at equilibrium.
Description
[N/A]Directly related questions
- 22N.1A.SL.TZ0.23: Which combination is correct regarding the anode and electron flow in an electrolytic cell?
- 22N.1A.SL.TZ0.23: Which combination is correct regarding the anode and electron flow in an electrolytic cell?
-
22N.1A.HL.TZ0.23:
Which of these changes would shift the equilibrium to the right?
[Co(H2O)6]2+ (aq) + 4Cl− (aq) [CoCl4]2− (aq) + 6H2O (l)
I. Addition of 0.01 M HCl
II. Addition of concentrated HCl
III. Evaporation of water
A. I and II onlyB. I and III only
C. II and III only
D. I, II and III
-
22N.1A.HL.TZ0.23:
Which of these changes would shift the equilibrium to the right?
[Co(H2O)6]2+ (aq) + 4Cl− (aq) [CoCl4]2− (aq) + 6H2O (l)
I. Addition of 0.01 M HCl
II. Addition of concentrated HCl
III. Evaporation of water
A. I and II onlyB. I and III only
C. II and III only
D. I, II and III
-
22N.1A.SL.TZ0.18:
The exothermic reaction 2 (g) + 3Cl2 (g) 2Cl3 (g) is at equilibrium in a fixed volume. What is correct about the reaction quotient, Q, and shift in position of equilibrium the instant temperature is raised?
A. Q > K, equilibrium shifts right towards products.B. Q > K, equilibrium shifts left towards reactants.
C. Q < K, equilibrium shifts right towards products.
D. Q < K, equilibrium shifts left towards reactants.
-
22N.1A.SL.TZ0.18:
The exothermic reaction 2 (g) + 3Cl2 (g) 2Cl3 (g) is at equilibrium in a fixed volume. What is correct about the reaction quotient, Q, and shift in position of equilibrium the instant temperature is raised?
A. Q > K, equilibrium shifts right towards products.B. Q > K, equilibrium shifts left towards reactants.
C. Q < K, equilibrium shifts right towards products.
D. Q < K, equilibrium shifts left towards reactants.
- 22N.2.SL.TZ0.4a.ii: Explain, with reference to Le Châtelier’s principle, the effect of using dilute rather than...
- 22N.2.SL.TZ0.4a.ii: Explain, with reference to Le Châtelier’s principle, the effect of using dilute rather than...
- 22N.2.SL.TZ0.a.ii: Explain, with reference to Le Châtelier’s principle, the effect of using dilute rather than...
-
19M.1A.HL.TZ2.22:
Consider the following equilibrium reaction.
2N2O (g) + O2 (g) 4NO (g) ΔH = +16 kJ
Which change will move the equilibrium to the right?
A. Decrease in pressure
B. Decrease in temperature
C. Increase in [NO]
D. Decrease in [O2]
-
19M.1A.HL.TZ2.22:
Consider the following equilibrium reaction.
2N2O (g) + O2 (g) 4NO (g) ΔH = +16 kJ
Which change will move the equilibrium to the right?
A. Decrease in pressure
B. Decrease in temperature
C. Increase in [NO]
D. Decrease in [O2]
-
19M.1A.HL.TZ2.22:
Consider the following equilibrium reaction.
2N2O (g) + O2 (g) 4NO (g) ΔH = +16 kJ
Which change will move the equilibrium to the right?
A. Decrease in pressure
B. Decrease in temperature
C. Increase in [NO]
D. Decrease in [O2]
-
19M.1A.HL.TZ2.22:
Consider the following equilibrium reaction.
2N2O (g) + O2 (g) 4NO (g) ΔH = +16 kJ
Which change will move the equilibrium to the right?
A. Decrease in pressure
B. Decrease in temperature
C. Increase in [NO]
D. Decrease in [O2]
-
19M.2.SL.TZ1.4c:
Comment on why peracetic acid, CH3COOOH, is always sold in solution with ethanoic acid and hydrogen peroxide.
H2O2 (aq) + CH3COOH (aq) ⇌ CH3COOOH (aq) + H2O (l)
-
19M.2.SL.TZ1.4c:
Comment on why peracetic acid, CH3COOOH, is always sold in solution with ethanoic acid and hydrogen peroxide.
H2O2 (aq) + CH3COOH (aq) ⇌ CH3COOOH (aq) + H2O (l)
-
19M.2.SL.TZ1.c:
Comment on why peracetic acid, CH3COOOH, is always sold in solution with ethanoic acid and hydrogen peroxide.
H2O2 (aq) + CH3COOH (aq) ⇌ CH3COOOH (aq) + H2O (l)
-
19M.2.SL.TZ1.4c:
Comment on why peracetic acid, CH3COOOH, is always sold in solution with ethanoic acid and hydrogen peroxide.
H2O2 (aq) + CH3COOH (aq) ⇌ CH3COOOH (aq) + H2O (l)
-
19M.2.SL.TZ1.4c:
Comment on why peracetic acid, CH3COOOH, is always sold in solution with ethanoic acid and hydrogen peroxide.
H2O2 (aq) + CH3COOH (aq) ⇌ CH3COOOH (aq) + H2O (l)
-
19M.2.SL.TZ1.c:
Comment on why peracetic acid, CH3COOOH, is always sold in solution with ethanoic acid and hydrogen peroxide.
H2O2 (aq) + CH3COOH (aq) ⇌ CH3COOOH (aq) + H2O (l)
-
19M.2.SL.TZ2.5b:
When a bottle of carbonated water is opened, these equilibria are disturbed.
State, giving a reason, how a decrease in pressure affects the position of Equilibrium (1).
-
19M.2.SL.TZ2.5b:
When a bottle of carbonated water is opened, these equilibria are disturbed.
State, giving a reason, how a decrease in pressure affects the position of Equilibrium (1).
-
19M.2.SL.TZ2.b:
When a bottle of carbonated water is opened, these equilibria are disturbed.
State, giving a reason, how a decrease in pressure affects the position of Equilibrium (1).
-
19M.2.SL.TZ2.5b:
When a bottle of carbonated water is opened, these equilibria are disturbed.
State, giving a reason, how a decrease in pressure affects the position of Equilibrium (1).
-
19M.2.SL.TZ2.5b:
When a bottle of carbonated water is opened, these equilibria are disturbed.
State, giving a reason, how a decrease in pressure affects the position of Equilibrium (1).
-
19M.2.SL.TZ2.b:
When a bottle of carbonated water is opened, these equilibria are disturbed.
State, giving a reason, how a decrease in pressure affects the position of Equilibrium (1).
-
19M.2.SL.TZ2.5d(ii):
Predict, referring to Equilibrium (2), how the added sodium hydrogencarbonate affects the pH.(Assume pressure and temperature remain constant.)
-
19M.2.SL.TZ2.5d(ii):
Predict, referring to Equilibrium (2), how the added sodium hydrogencarbonate affects the pH.(Assume pressure and temperature remain constant.)
-
19M.2.SL.TZ2.d(ii):
Predict, referring to Equilibrium (2), how the added sodium hydrogencarbonate affects the pH.(Assume pressure and temperature remain constant.)
-
19M.2.SL.TZ2.5d(ii):
Predict, referring to Equilibrium (2), how the added sodium hydrogencarbonate affects the pH.(Assume pressure and temperature remain constant.)
-
19M.2.SL.TZ2.5d(ii):
Predict, referring to Equilibrium (2), how the added sodium hydrogencarbonate affects the pH.(Assume pressure and temperature remain constant.)
-
19M.2.SL.TZ2.d(ii):
Predict, referring to Equilibrium (2), how the added sodium hydrogencarbonate affects the pH.(Assume pressure and temperature remain constant.)
-
19M.2.SL.TZ1.4c:
Comment on why peracetic acid, CH3COOOH, is always sold in solution with ethanoic acid and hydrogen peroxide.
H2O2 (aq) + CH3COOH (aq) CH3COOOH (aq) + H2O (l)
-
19M.2.SL.TZ1.4c:
Comment on why peracetic acid, CH3COOOH, is always sold in solution with ethanoic acid and hydrogen peroxide.
H2O2 (aq) + CH3COOH (aq) CH3COOOH (aq) + H2O (l)
-
19M.2.SL.TZ1.c:
Comment on why peracetic acid, CH3COOOH, is always sold in solution with ethanoic acid and hydrogen peroxide.
H2O2 (aq) + CH3COOH (aq) CH3COOOH (aq) + H2O (l)
-
19M.2.SL.TZ1.4c:
Comment on why peracetic acid, CH3COOOH, is always sold in solution with ethanoic acid and hydrogen peroxide.
H2O2 (aq) + CH3COOH (aq) CH3COOOH (aq) + H2O (l)
-
19M.2.SL.TZ1.4c:
Comment on why peracetic acid, CH3COOOH, is always sold in solution with ethanoic acid and hydrogen peroxide.
H2O2 (aq) + CH3COOH (aq) CH3COOOH (aq) + H2O (l)
-
19M.2.SL.TZ1.c:
Comment on why peracetic acid, CH3COOOH, is always sold in solution with ethanoic acid and hydrogen peroxide.
H2O2 (aq) + CH3COOH (aq) CH3COOOH (aq) + H2O (l)
-
19M.2.SL.TZ1.5b:
A solution of bleach can be made by reacting chlorine gas with a sodium hydroxide solution.
Cl2 (g) + 2NaOH (aq) NaOCl (aq) + NaCl (aq) + H2O (l)
Suggest, with reference to Le Châtelier’s principle, why it is dangerous to mix vinegar and bleach together as cleaners.
-
19M.2.SL.TZ1.5b:
A solution of bleach can be made by reacting chlorine gas with a sodium hydroxide solution.
Cl2 (g) + 2NaOH (aq) NaOCl (aq) + NaCl (aq) + H2O (l)
Suggest, with reference to Le Châtelier’s principle, why it is dangerous to mix vinegar and bleach together as cleaners.
-
19M.2.SL.TZ1.b:
A solution of bleach can be made by reacting chlorine gas with a sodium hydroxide solution.
Cl2 (g) + 2NaOH (aq) NaOCl (aq) + NaCl (aq) + H2O (l)
Suggest, with reference to Le Châtelier’s principle, why it is dangerous to mix vinegar and bleach together as cleaners.
-
19M.2.SL.TZ1.5b:
A solution of bleach can be made by reacting chlorine gas with a sodium hydroxide solution.
Cl2 (g) + 2NaOH (aq) NaOCl (aq) + NaCl (aq) + H2O (l)
Suggest, with reference to Le Châtelier’s principle, why it is dangerous to mix vinegar and bleach together as cleaners.
-
19M.2.SL.TZ1.5b:
A solution of bleach can be made by reacting chlorine gas with a sodium hydroxide solution.
Cl2 (g) + 2NaOH (aq) NaOCl (aq) + NaCl (aq) + H2O (l)
Suggest, with reference to Le Châtelier’s principle, why it is dangerous to mix vinegar and bleach together as cleaners.
-
19M.2.SL.TZ1.b:
A solution of bleach can be made by reacting chlorine gas with a sodium hydroxide solution.
Cl2 (g) + 2NaOH (aq) NaOCl (aq) + NaCl (aq) + H2O (l)
Suggest, with reference to Le Châtelier’s principle, why it is dangerous to mix vinegar and bleach together as cleaners.
-
19M.2.SL.TZ2.5a(iii):
When a bottle of carbonated water is opened, these equilibria are disturbed.
State, giving a reason, how a decrease in pressure affects the position of Equilibrium (1).
-
19M.2.SL.TZ2.5a(iii):
When a bottle of carbonated water is opened, these equilibria are disturbed.
State, giving a reason, how a decrease in pressure affects the position of Equilibrium (1).
-
19M.2.SL.TZ2.a(iii):
When a bottle of carbonated water is opened, these equilibria are disturbed.
State, giving a reason, how a decrease in pressure affects the position of Equilibrium (1).
-
19M.2.SL.TZ2.5a(iii):
When a bottle of carbonated water is opened, these equilibria are disturbed.
State, giving a reason, how a decrease in pressure affects the position of Equilibrium (1).
-
19M.2.SL.TZ2.5a(iii):
When a bottle of carbonated water is opened, these equilibria are disturbed.
State, giving a reason, how a decrease in pressure affects the position of Equilibrium (1).
-
19M.2.SL.TZ2.a(iii):
When a bottle of carbonated water is opened, these equilibria are disturbed.
State, giving a reason, how a decrease in pressure affects the position of Equilibrium (1).
-
19M.2.SL.TZ2.5b(i):
Predict, referring to Equilibrium (2), how the added sodium hydrogencarbonate affects the pH.(Assume pressure and temperature remain constant.)
-
19M.2.SL.TZ2.5b(i):
Predict, referring to Equilibrium (2), how the added sodium hydrogencarbonate affects the pH.(Assume pressure and temperature remain constant.)
-
19M.2.SL.TZ2.b(i):
Predict, referring to Equilibrium (2), how the added sodium hydrogencarbonate affects the pH.(Assume pressure and temperature remain constant.)
-
19M.2.SL.TZ2.5b(i):
Predict, referring to Equilibrium (2), how the added sodium hydrogencarbonate affects the pH.(Assume pressure and temperature remain constant.)
-
19M.2.SL.TZ2.5b(i):
Predict, referring to Equilibrium (2), how the added sodium hydrogencarbonate affects the pH.(Assume pressure and temperature remain constant.)
-
19M.2.SL.TZ2.b(i):
Predict, referring to Equilibrium (2), how the added sodium hydrogencarbonate affects the pH.(Assume pressure and temperature remain constant.)
- 19N.1A.HL.TZ0.24: Which corresponds to a system at equilibrium?
- 19N.1A.HL.TZ0.24: Which corresponds to a system at equilibrium?
- 19N.1A.HL.TZ0.24: Which corresponds to a system at equilibrium?
- 19N.1A.HL.TZ0.24: Which corresponds to a system at equilibrium?
-
19N.1A.SL.TZ0.19:
What effect does increasing both pressure and temperature have on the equilibrium constant, Kc?
N2 (g) + 3H2 (g) 2NH3 (g) ΔH = −45.9 kJ
A. Decreases
B. Increases
C. Remains constant
D. Cannot be predicted as effects are opposite
-
19N.1A.SL.TZ0.19:
What effect does increasing both pressure and temperature have on the equilibrium constant, Kc?
N2 (g) + 3H2 (g) 2NH3 (g) ΔH = −45.9 kJ
A. Decreases
B. Increases
C. Remains constant
D. Cannot be predicted as effects are opposite
-
19N.1A.SL.TZ0.19:
What effect does increasing both pressure and temperature have on the equilibrium constant, Kc?
N2 (g) + 3H2 (g) 2NH3 (g) ΔH = −45.9 kJ
A. Decreases
B. Increases
C. Remains constant
D. Cannot be predicted as effects are opposite
-
19N.1A.SL.TZ0.19:
What effect does increasing both pressure and temperature have on the equilibrium constant, Kc?
N2 (g) + 3H2 (g) 2NH3 (g) ΔH = −45.9 kJ
A. Decreases
B. Increases
C. Remains constant
D. Cannot be predicted as effects are opposite
-
19N.2.SL.TZ0.4a(iii):
The dissociation of citric acid is an endothermic process. State the effect on the hydrogen ion concentration, [H+], and on Ka, of increasing the temperature.
-
19N.2.SL.TZ0.4a(iii):
The dissociation of citric acid is an endothermic process. State the effect on the hydrogen ion concentration, [H+], and on Ka, of increasing the temperature.
-
19N.2.SL.TZ0.a(iii):
The dissociation of citric acid is an endothermic process. State the effect on the hydrogen ion concentration, [H+], and on Ka, of increasing the temperature.
-
19N.2.SL.TZ0.4a(iii):
The dissociation of citric acid is an endothermic process. State the effect on the hydrogen ion concentration, [H+], and on Ka, of increasing the temperature.
-
19N.2.SL.TZ0.4a(iii):
The dissociation of citric acid is an endothermic process. State the effect on the hydrogen ion concentration, [H+], and on Ka, of increasing the temperature.
-
19N.2.SL.TZ0.a(iii):
The dissociation of citric acid is an endothermic process. State the effect on the hydrogen ion concentration, [H+], and on Ka, of increasing the temperature.
-
19N.2.SL.TZ0.4a(iii):
The dissociation of citric acid is an endothermic process. State the effect on the hydrogen ion concentration, [H+], and on the equilibrium constant, of increasing the temperature.
-
19N.2.SL.TZ0.4a(iii):
The dissociation of citric acid is an endothermic process. State the effect on the hydrogen ion concentration, [H+], and on the equilibrium constant, of increasing the temperature.
-
19N.2.SL.TZ0.a(iii):
The dissociation of citric acid is an endothermic process. State the effect on the hydrogen ion concentration, [H+], and on the equilibrium constant, of increasing the temperature.
-
19N.2.SL.TZ0.4a(iii):
The dissociation of citric acid is an endothermic process. State the effect on the hydrogen ion concentration, [H+], and on the equilibrium constant, of increasing the temperature.
-
19N.2.SL.TZ0.4a(iii):
The dissociation of citric acid is an endothermic process. State the effect on the hydrogen ion concentration, [H+], and on the equilibrium constant, of increasing the temperature.
-
19N.2.SL.TZ0.a(iii):
The dissociation of citric acid is an endothermic process. State the effect on the hydrogen ion concentration, [H+], and on the equilibrium constant, of increasing the temperature.
-
20N.1A.SL.TZ0.18:
What is correct when temperature increases in this reaction at equilibrium?
-
20N.1A.SL.TZ0.18:
What is correct when temperature increases in this reaction at equilibrium?
-
20N.1A.SL.TZ0.18:
What is correct when temperature increases in this reaction at equilibrium?
-
20N.1A.SL.TZ0.18:
What is correct when temperature increases in this reaction at equilibrium?
- 20N.1B.SL.TZ0.2b: The ice bath is used at equilibrium to slow down the forward and reverse reactions. Explain why...
- 20N.1B.SL.TZ0.b: The ice bath is used at equilibrium to slow down the forward and reverse reactions. Explain why...
- 20N.1B.SL.TZ0.2b: The ice bath is used at equilibrium to slow down the forward and reverse reactions. Explain why...
- 20N.1B.SL.TZ0.b: The ice bath is used at equilibrium to slow down the forward and reverse reactions. Explain why...
- 20N.1B.SL.TZ0.2c: Suggest why the titration must be conducted quickly even though a low temperature is maintained.
- 20N.1B.SL.TZ0.c: Suggest why the titration must be conducted quickly even though a low temperature is maintained.
- 20N.1B.SL.TZ0.2c: Suggest why the titration must be conducted quickly even though a low temperature is maintained.
- 20N.1B.SL.TZ0.c: Suggest why the titration must be conducted quickly even though a low temperature is maintained.
-
21M.1A.SL.TZ1.18:
Which changes produce the greatest increase in the percentage conversion of methane?
CH4 (g) + H2O (g) CO (g) + 3H2 (g)
-
21M.1A.SL.TZ1.18:
Which changes produce the greatest increase in the percentage conversion of methane?
CH4 (g) + H2O (g) CO (g) + 3H2 (g)
-
21M.1A.SL.TZ1.18:
Which changes produce the greatest increase in the percentage conversion of methane?
CH4 (g) + H2O (g) CO (g) + 3H2 (g)
-
21M.1A.SL.TZ1.18:
Which changes produce the greatest increase in the percentage conversion of methane?
CH4 (g) + H2O (g) CO (g) + 3H2 (g)
- 21M.2.SL.TZ1.6b(ii): Outline why increasing the concentration of N2O5 increases the rate of reaction.
- 21M.2.SL.TZ1.6b(ii): Outline why increasing the concentration of N2O5 increases the rate of reaction.
- 21M.2.SL.TZ1.b(ii): Outline why increasing the concentration of N2O5 increases the rate of reaction.
- 21M.2.SL.TZ1.6b(ii): Outline why increasing the concentration of N2O5 increases the rate of reaction.
- 21M.2.SL.TZ1.6b(ii): Outline why increasing the concentration of N2O5 increases the rate of reaction.
- 21M.2.SL.TZ1.b(ii): Outline why increasing the concentration of N2O5 increases the rate of reaction.
- 21M.2.SL.TZ2.7b: State and explain how the equilibrium would be affected by increasing the volume of the reaction...
- 21M.2.SL.TZ2.7b: State and explain how the equilibrium would be affected by increasing the volume of the reaction...
- 21M.2.SL.TZ2.b: State and explain how the equilibrium would be affected by increasing the volume of the reaction...
- 21M.2.SL.TZ2.7b: State and explain how the equilibrium would be affected by increasing the volume of the reaction...
- 21M.2.SL.TZ2.7b: State and explain how the equilibrium would be affected by increasing the volume of the reaction...
- 21M.2.SL.TZ2.b: State and explain how the equilibrium would be affected by increasing the volume of the reaction...
- 21M.2.SL.TZ1.6b(iii): Outline why increasing the concentration of N2O5 increases the rate of reaction.
- 21M.2.SL.TZ1.6b(iii): Outline why increasing the concentration of N2O5 increases the rate of reaction.
- 21M.2.SL.TZ1.b(iii): Outline why increasing the concentration of N2O5 increases the rate of reaction.
- 21M.2.SL.TZ1.6b(iii): Outline why increasing the concentration of N2O5 increases the rate of reaction.
- 21M.2.SL.TZ1.6b(iii): Outline why increasing the concentration of N2O5 increases the rate of reaction.
- 21M.2.SL.TZ1.b(iii): Outline why increasing the concentration of N2O5 increases the rate of reaction.
-
21M.2.SL.TZ2.2e:
Consider the following equilibrium reaction:
2SO2 (g) + O2 (g) 2SO3 (g)
State and explain how the equilibrium would be affected by increasing the volume of the reaction container at a constant temperature.
-
21M.2.SL.TZ2.2e:
Consider the following equilibrium reaction:
2SO2 (g) + O2 (g) 2SO3 (g)
State and explain how the equilibrium would be affected by increasing the volume of the reaction container at a constant temperature.
-
21M.2.SL.TZ2.e:
Consider the following equilibrium reaction:
2SO2 (g) + O2 (g) 2SO3 (g)
State and explain how the equilibrium would be affected by increasing the volume of the reaction container at a constant temperature.
-
21M.2.SL.TZ2.2e:
Consider the following equilibrium reaction:
2SO2 (g) + O2 (g) 2SO3 (g)
State and explain how the equilibrium would be affected by increasing the volume of the reaction container at a constant temperature.
-
21M.2.SL.TZ2.2e:
Consider the following equilibrium reaction:
2SO2 (g) + O2 (g) 2SO3 (g)
State and explain how the equilibrium would be affected by increasing the volume of the reaction container at a constant temperature.
-
21M.2.SL.TZ2.e:
Consider the following equilibrium reaction:
2SO2 (g) + O2 (g) 2SO3 (g)
State and explain how the equilibrium would be affected by increasing the volume of the reaction container at a constant temperature.
-
21N.2.SL.TZ0.5c:
Calculate the concentration of H3PO4 if 25.00 cm3 is completely neutralised by the addition of 28.40 cm3 of 0.5000 mol dm−3 NaOH.
-
21N.2.SL.TZ0.5c:
Calculate the concentration of H3PO4 if 25.00 cm3 is completely neutralised by the addition of 28.40 cm3 of 0.5000 mol dm−3 NaOH.
-
21N.2.SL.TZ0.c:
Calculate the concentration of H3PO4 if 25.00 cm3 is completely neutralised by the addition of 28.40 cm3 of 0.5000 mol dm−3 NaOH.
-
21N.2.SL.TZ0.5c:
Calculate the concentration of H3PO4 if 25.00 cm3 is completely neutralised by the addition of 28.40 cm3 of 0.5000 mol dm−3 NaOH.
-
21N.2.SL.TZ0.5c:
Calculate the concentration of H3PO4 if 25.00 cm3 is completely neutralised by the addition of 28.40 cm3 of 0.5000 mol dm−3 NaOH.
-
21N.2.SL.TZ0.c:
Calculate the concentration of H3PO4 if 25.00 cm3 is completely neutralised by the addition of 28.40 cm3 of 0.5000 mol dm−3 NaOH.
-
21N.2.SL.TZ0.5c:
Calculate the concentration of H3PO4 if 25.00 cm3 is completely neutralised by the addition of 28.40 cm3 of 0.5000 mol dm−3 NaOH.
-
21N.2.SL.TZ0.5c:
Calculate the concentration of H3PO4 if 25.00 cm3 is completely neutralised by the addition of 28.40 cm3 of 0.5000 mol dm−3 NaOH.
-
21N.2.SL.TZ0.c:
Calculate the concentration of H3PO4 if 25.00 cm3 is completely neutralised by the addition of 28.40 cm3 of 0.5000 mol dm−3 NaOH.
-
21N.2.SL.TZ0.5c:
Calculate the concentration of H3PO4 if 25.00 cm3 is completely neutralised by the addition of 28.40 cm3 of 0.5000 mol dm−3 NaOH.
-
21N.2.SL.TZ0.5c:
Calculate the concentration of H3PO4 if 25.00 cm3 is completely neutralised by the addition of 28.40 cm3 of 0.5000 mol dm−3 NaOH.
-
21N.2.SL.TZ0.c:
Calculate the concentration of H3PO4 if 25.00 cm3 is completely neutralised by the addition of 28.40 cm3 of 0.5000 mol dm−3 NaOH.
- 22M.2.SL.TZ1.3a(ii): State how the use of a catalyst affects the position of the equilibrium.
- 22M.2.SL.TZ1.3a(ii): State how the use of a catalyst affects the position of the equilibrium.
- 22M.2.SL.TZ1.a(ii): State how the use of a catalyst affects the position of the equilibrium.
- 22M.2.SL.TZ1.3a(ii): State how the use of a catalyst affects the position of the equilibrium.
- 22M.2.SL.TZ1.3a(ii): State how the use of a catalyst affects the position of the equilibrium.
- 22M.2.SL.TZ1.a(ii): State how the use of a catalyst affects the position of the equilibrium.
- 22M.2.SL.TZ2.6b(ii): Explain the effect of increasing temperature on the yield of SO3.
- 22M.2.SL.TZ2.6b(ii): Explain the effect of increasing temperature on the yield of SO3.
- 22M.2.SL.TZ2.b(ii): Explain the effect of increasing temperature on the yield of SO3.
- 22M.2.SL.TZ2.6b(ii): Explain the effect of increasing temperature on the yield of SO3.
- 22M.2.SL.TZ2.6b(ii): Explain the effect of increasing temperature on the yield of SO3.
- 22M.2.SL.TZ2.b(ii): Explain the effect of increasing temperature on the yield of SO3.
- 22M.2.SL.TZ2.3b(ii): Explain the effect of increasing temperature on the yield of SO3.
- 22M.2.SL.TZ2.3b(ii): Explain the effect of increasing temperature on the yield of SO3.
- 22M.2.SL.TZ2.b(ii): Explain the effect of increasing temperature on the yield of SO3.
- 22M.2.SL.TZ2.3b(ii): Explain the effect of increasing temperature on the yield of SO3.
- 22M.2.SL.TZ2.3b(ii): Explain the effect of increasing temperature on the yield of SO3.
- 22M.2.SL.TZ2.b(ii): Explain the effect of increasing temperature on the yield of SO3.
-
22N.1A.HL.TZ0.23:
Which of these changes would shift the equilibrium to the right?
[Co(H2O)6]2+ (aq) + 4Cl− (aq) [CoCl4]2− (aq) + 6H2O (l)
I. Addition of 0.01 M HCl
II. Addition of concentrated HCl
III. Evaporation of water
A. I and II onlyB. I and III only
C. II and III only
D. I, II and III
-
22N.1A.HL.TZ0.23:
Which of these changes would shift the equilibrium to the right?
[Co(H2O)6]2+ (aq) + 4Cl− (aq) [CoCl4]2− (aq) + 6H2O (l)
I. Addition of 0.01 M HCl
II. Addition of concentrated HCl
III. Evaporation of water
A. I and II onlyB. I and III only
C. II and III only
D. I, II and III