Syllabus sections » |
C.6 Electrochemistry, rechargeable batteries and fuel cells (HL only)
Description
[N/A]Directly related questions
-
17N.3.hl.TZ0.20a:
Deduce the half-equations and the overall equation for the reactions taking place in a direct methanol fuel cell (DMFC) under acidic conditions.
-
17N.3.hl.TZ0.20a:
Deduce the half-equations and the overall equation for the reactions taking place in a direct methanol fuel cell (DMFC) under acidic conditions.
-
17N.3.hl.TZ0.a:
Deduce the half-equations and the overall equation for the reactions taking place in a direct methanol fuel cell (DMFC) under acidic conditions.
-
18M.3.hl.TZ1.14a.ii:
State the factor that limits the maximum current that can be drawn from this cell and how electrodes are designed to maximize the current.
-
18M.3.hl.TZ1.14a.ii:
State the factor that limits the maximum current that can be drawn from this cell and how electrodes are designed to maximize the current.
-
18M.3.hl.TZ1.a.ii:
State the factor that limits the maximum current that can be drawn from this cell and how electrodes are designed to maximize the current.
-
18M.3.hl.TZ2.13c:
Fuel cells have a higher thermodynamic efficiency than octane. The following table gives some information on a direct methanol fuel cell.
Determine the thermodynamic efficiency of a methanol fuel cell operating at 0.576 V.
Use sections 1 and 2 of the data booklet.
-
18M.3.hl.TZ2.13c:
Fuel cells have a higher thermodynamic efficiency than octane. The following table gives some information on a direct methanol fuel cell.
Determine the thermodynamic efficiency of a methanol fuel cell operating at 0.576 V.
Use sections 1 and 2 of the data booklet.
-
18M.3.hl.TZ2.c:
Fuel cells have a higher thermodynamic efficiency than octane. The following table gives some information on a direct methanol fuel cell.
Determine the thermodynamic efficiency of a methanol fuel cell operating at 0.576 V.
Use sections 1 and 2 of the data booklet.
-
19M.3.hl.TZ1.17b(i):
Ethanol can be used in a direct-ethanol fuel cell (DEFC) as illustrated by the flow chart.
Deduce the half-equations occurring at electrodes A and B.
Electrode A:
Electrode B:
-
19M.3.hl.TZ1.17b(i):
Ethanol can be used in a direct-ethanol fuel cell (DEFC) as illustrated by the flow chart.
Deduce the half-equations occurring at electrodes A and B.
Electrode A:
Electrode B:
-
19M.3.hl.TZ1.b(i):
Ethanol can be used in a direct-ethanol fuel cell (DEFC) as illustrated by the flow chart.
Deduce the half-equations occurring at electrodes A and B.
Electrode A:
Electrode B:
- 19M.3.hl.TZ2.19c: Outline one difference between a primary and a secondary cell.
- 19M.3.hl.TZ2.19c: Outline one difference between a primary and a secondary cell.
- 19M.3.hl.TZ2.c: Outline one difference between a primary and a secondary cell.
-
19M.3.hl.TZ2.19b:
The cell potential for the spontaneous reaction when standard magnesium and silver half-cells are connected is +3.17 V.
Determine the cell potential at 298 K when:
[Mg2+] = 0.0500 mol dm−3
[Ag+] = 0.100 mol dm−3Use sections 1 and 2 of the data booklet.
-
19M.3.hl.TZ2.19b:
The cell potential for the spontaneous reaction when standard magnesium and silver half-cells are connected is +3.17 V.
Determine the cell potential at 298 K when:
[Mg2+] = 0.0500 mol dm−3
[Ag+] = 0.100 mol dm−3Use sections 1 and 2 of the data booklet.
-
19M.3.hl.TZ2.b:
The cell potential for the spontaneous reaction when standard magnesium and silver half-cells are connected is +3.17 V.
Determine the cell potential at 298 K when:
[Mg2+] = 0.0500 mol dm−3
[Ag+] = 0.100 mol dm−3Use sections 1 and 2 of the data booklet.
-
19N.3.hl.TZ0.20b(ii):
Suggest how PEM fuel cells can be used to produce a larger voltage than that calculated in (b)(i).
-
19N.3.hl.TZ0.20b(ii):
Suggest how PEM fuel cells can be used to produce a larger voltage than that calculated in (b)(i).
-
19N.3.hl.TZ0.b(ii):
Suggest how PEM fuel cells can be used to produce a larger voltage than that calculated in (b)(i).
- 19N.3.hl.TZ0.20c: Suggest an advantage of the PEM fuel cell over the lead-acid battery for use in cars.
- 19N.3.hl.TZ0.20c: Suggest an advantage of the PEM fuel cell over the lead-acid battery for use in cars.
- 19N.3.hl.TZ0.c: Suggest an advantage of the PEM fuel cell over the lead-acid battery for use in cars.
-
17N.3.hl.TZ0.20b:
Outline one advantage and one disadvantage of the methanol cell (DMFC) compared with a hydrogen-oxygen fuel cell.
-
17N.3.hl.TZ0.20b:
Outline one advantage and one disadvantage of the methanol cell (DMFC) compared with a hydrogen-oxygen fuel cell.
-
17N.3.hl.TZ0.b:
Outline one advantage and one disadvantage of the methanol cell (DMFC) compared with a hydrogen-oxygen fuel cell.
-
18M.3.hl.TZ1.14a.i:
Complete the half-equations on the diagram and identify the species moving between the electrodes.
-
18M.3.hl.TZ1.14a.i:
Complete the half-equations on the diagram and identify the species moving between the electrodes.
-
18M.3.hl.TZ1.a.i:
Complete the half-equations on the diagram and identify the species moving between the electrodes.
- 18N.3.hl.TZ0.15a: Outline how a rechargeable battery differs from a primary cell.
- 18N.3.hl.TZ0.15a: Outline how a rechargeable battery differs from a primary cell.
- 18N.3.hl.TZ0.a: Outline how a rechargeable battery differs from a primary cell.
-
18N.3.hl.TZ0.15b:
Formulate half-equations for the reactions at the anode (negative electrode) and cathode (positive electrode) during discharge of a lithium-ion battery.
-
18N.3.hl.TZ0.15b:
Formulate half-equations for the reactions at the anode (negative electrode) and cathode (positive electrode) during discharge of a lithium-ion battery.
-
18N.3.hl.TZ0.b:
Formulate half-equations for the reactions at the anode (negative electrode) and cathode (positive electrode) during discharge of a lithium-ion battery.
-
18N.3.hl.TZ0.15c:
A voltaic cell consists of a nickel electrode in 1.0 mol dm−3 Ni2+ (aq) solution and a cadmium electrode in a Cd2+ (aq) solution of unknown concentration.
Cd (s) + Ni2+ (aq) → Cd2+ (aq) + Ni (s) EΘcell = 0.14 V
Determine the concentration of the Cd2+ (aq) solution if the cell voltage, E, is 0.19 V at 298 K. Use section 1 of the data booklet.
-
18N.3.hl.TZ0.15c:
A voltaic cell consists of a nickel electrode in 1.0 mol dm−3 Ni2+ (aq) solution and a cadmium electrode in a Cd2+ (aq) solution of unknown concentration.
Cd (s) + Ni2+ (aq) → Cd2+ (aq) + Ni (s) EΘcell = 0.14 V
Determine the concentration of the Cd2+ (aq) solution if the cell voltage, E, is 0.19 V at 298 K. Use section 1 of the data booklet.
-
18N.3.hl.TZ0.c:
A voltaic cell consists of a nickel electrode in 1.0 mol dm−3 Ni2+ (aq) solution and a cadmium electrode in a Cd2+ (aq) solution of unknown concentration.
Cd (s) + Ni2+ (aq) → Cd2+ (aq) + Ni (s) EΘcell = 0.14 V
Determine the concentration of the Cd2+ (aq) solution if the cell voltage, E, is 0.19 V at 298 K. Use section 1 of the data booklet.
-
19M.3.hl.TZ1.17b(ii):
State the name and function of X in the diagram in (b)(i).
Name:
Function:
-
19M.3.hl.TZ1.b(ii):
State the name and function of X in the diagram in (b)(i).
Name:
Function:
-
19M.3.hl.TZ1.17b(ii):
State the name and function of X in the diagram in (b)(i).
Name:
Function:
-
19M.3.hl.TZ1.17b(iii):
Outline why aqueous ethanol, rather than pure ethanol, is used in a DEFC.
-
19M.3.hl.TZ1.b(iii):
Outline why aqueous ethanol, rather than pure ethanol, is used in a DEFC.
-
19M.3.hl.TZ1.17b(iii):
Outline why aqueous ethanol, rather than pure ethanol, is used in a DEFC.
-
19M.3.hl.TZ2.19a:
Outline how a microbial fuel cell produces an electric current from glucose.
C6H12O6 (aq) + 6O2 (g) → 6CO2 (g) + 6H2O (l)
-
19M.3.hl.TZ2.19a:
Outline how a microbial fuel cell produces an electric current from glucose.
C6H12O6 (aq) + 6O2 (g) → 6CO2 (g) + 6H2O (l)
-
19M.3.hl.TZ2.a:
Outline how a microbial fuel cell produces an electric current from glucose.
C6H12O6 (aq) + 6O2 (g) → 6CO2 (g) + 6H2O (l)
-
19N.3.hl.TZ0.20a:
Deduce the half-equations for the reactions occurring at the electrodes.
Anode (negative electrode):Cathode (positive electrode):
-
19N.3.hl.TZ0.20a:
Deduce the half-equations for the reactions occurring at the electrodes.
Anode (negative electrode):Cathode (positive electrode):
-
19N.3.hl.TZ0.a:
Deduce the half-equations for the reactions occurring at the electrodes.
Anode (negative electrode):Cathode (positive electrode):
-
19N.3.hl.TZ0.20b(i):
Calculate the cell potential, Eθ, in V, using section 24 of the data booklet.
-
19N.3.hl.TZ0.20b(i):
Calculate the cell potential, Eθ, in V, using section 24 of the data booklet.
-
19N.3.hl.TZ0.b(i):
Calculate the cell potential, Eθ, in V, using section 24 of the data booklet.
- 23M.1.SL.TZ1.15: Which diagram shows the enthalpy change for dissolving solid, X, in water, if the temperature...
- 23M.1.SL.TZ1.15: Which diagram shows the enthalpy change for dissolving solid, X, in water, if the temperature...
- 23M.1.HL.TZ2.4: What is the correct ground state electron orbital configuration for 2s22p2?
- 23M.1.SL.TZ2.5: What is the correct ground state electron orbital configuration for 2s22p2?
- 23M.1.HL.TZ2.4: What is the correct ground state electron orbital configuration for 2s22p2?
- 23M.1.SL.TZ2.5: What is the correct ground state electron orbital configuration for 2s22p2?