0%

DP IB Maths: AA HL

Topic Questions

Home / IB / Maths: AA HL / DP / Topic Questions / 1. Number & Algebra / 1.8 Complex Numbers


1.8 Complex Numbers

Question 1a

Marks: 4

Consider the complex numbers z subscript 1 equals square root of 3 plus 2 straight i and z subscript 2 equals straight i minus 3 square root of 3.

(a)
Find
(i)
u equals z subscript 1 z subscript 2
(ii)
v equals z subscript 1 over z subscript 2
    Assess your score
      

    Question 1b

    Marks: 3

    The complex numbers u and v are represented by the points straight A and straight B respectively on an Argand diagram with origin straight O. 

    (b)
    Determine whether the angle made by OA with the positive horizontal axis is greater than or less than the angle made by OB with the positive horizontal axis. Give a reason for your answer.
      Assess your score
        

      Question 2a

      Marks: 4

      Consider the complex number z equals negative a plus 3 over 4 straight i.

      (a)
      Write down, in terms of a,
      (i)
      Re open parentheses z to the power of italic 2 close parentheses
      (ii)
      Im open parentheses z to the power of italic 3 close parentheses
        Assess your score
          

        Question 2b

        Marks: 4
        (b)
        In the case where a equals 2, find the modulus and argument of z cubed.
          Assess your score
            

          Question 3a

          Marks: 3

          Consider the complex numbers  z subscript 1 equals straight i minus 1 half and z subscript 2 equals 1 half minus 3 over straight i.

          (a)
          Express z subscript 2 in the form a plus b straight i, where a comma b element of straight real numbers.
            Assess your score
              

            Question 3b

            Marks: 6
            (b)
            Find
            (i)
            z subscript 1 to the power of asterisk times z subscript 2
            (ii)
            z subscript 2 over z subscript 1
            (iii)
            open vertical bar z subscript 2 over z subscript 1 close vertical bar, giving your answer as an exact value.
              Assess your score
                

              Question 4

              Marks: 6

              Consider a general complex number z equals x plus straight i y,  where  x comma space y element of straight real numbers , z element of straight complex numbers and  z not equal to 0

              Show that

              (i)
              Re open parentheses 1 over straight z plus 1 over straight z to the power of asterisk times close parentheses equals fraction numerator 2 x over denominator x to the power of italic 2 plus y to the power of italic 2 end fraction
              (ii)
              Im open parentheses 1 over z plus 1 over z to the power of italic asterisk times close parentheses equals 0
              (iii)
              z z to the power of asterisk times equals open vertical bar z close vertical bar squared
                Assess your score
                  

                Question 5a

                Marks: 4

                Consider the equation z w minus w plus straight i z plus 1 equals 0, where w comma space z element of straight complex numbersw equals x plus straight i y.

                (a)
                Find an expression in terms of x and y for Re open parentheses z close parentheses.
                  Assess your score
                    

                  Question 5b

                  Marks: 4
                  (b)
                  Find in terms of x given that z is purely real.
                    Assess your score
                      

                    Question 6a

                    Marks: 5

                    Consider the complex numbers z subscript 1 equals fraction numerator 3 minus straight i over denominator 1 minus 2 straight i end fraction and z subscript 2 equals negative 3 straight i plus 1. 

                    (a)
                    Find the modulus of z subscript 1 over z subscript 2 to the power of asterisk times   giving your answer as an exact value.
                      Assess your score
                        

                      Question 6b

                      Marks: 2
                      (b)
                      The argument of z subscript 1 over z subscript 2 to the power of asterisk times is given as theta equals tan to the power of negative 1 end exponent x, where 0 less than theta less than 2 straight pi.  Find the value of x.
                        Assess your score
                          
                        Key Concepts
                        Modulus & Argument

                        Question 7a

                        Marks: 3

                        Consider the complex numbers z equals v over w comma v equals 1 minus p i space and space straight w equals 3 straight i minus 2 

                        (a)
                        Express z in the form a plus b straight i, where a comma space b comma space p element of straight real numbers..
                          Assess your score
                            

                          Question 7b

                          Marks: 4
                          (b)
                          In the case where z is purely imaginary, represent v comma space w and z on an Argand diagram.
                            Assess your score
                              

                            Question 8a

                            Marks: 4

                            Consider the complex numbers z equals fraction numerator a minus 3 straight i over denominator 2 plus straight i end fraction comma space w equals a plus b text i end text and z over w equals 1 plus 2 straight i  where a comma space b element of straight real numbers.

                            (a)
                            Find the values of a  and b.
                              Assess your score
                                

                              Question 8b

                              Marks: 2
                              (b)
                              Find the modulus of w over z, giving your answer as an exact value.
                                Assess your score
                                  
                                Key Concepts
                                Modulus & Argument

                                Question 8c

                                Marks: 2
                                (c)
                                Find the argument of w over z , giving your answer in the range negative straight pi less or equal than arg w over z less or equal than pi  .
                                  Assess your score
                                    
                                  Key Concepts
                                  Modulus & Argument

                                  Question 9

                                  Marks: 7

                                  Consider the complex numbers a minus w equals 2 z minus straight i and w minus 2 z equals b straight i minus 1

                                  Find the values of a and b such that Re open parentheses w close parentheses equals Im open parentheses z close parentheses and Re open parentheses w close parentheses equals Re open parentheses z close parentheses plus 1.

                                    Assess your score
                                      

                                    Question 10a

                                    Marks: 3

                                    Consider the complex numbers z subscript 1 equals 5 plus p straight i, z subscript 2 equals a plus b straight i and z subscript 1 over z subscript 2 equals negative 1 plus straight i , where z element of straight complex numbers
                                    and a comma space b element of straight real numbers.

                                    (a)
                                    Find the values of a and b in terms of p
                                      Assess your score
                                        

                                      Question 10b

                                      Marks: 3
                                      (b)
                                      Given that open vertical bar z subscript 2 close vertical bar equals square root of 73 , find the possible values of p.
                                        Assess your score
                                          
                                        Key Concepts
                                        Modulus & Argument

                                        Question 10c

                                        Marks: 2
                                        (c)
                                        Given additionally that arg open parentheses z subscript 2 close parentheses equals 2.78  radians correct to 2 decimal places, determine the exact value of Im open parentheses z subscript 2 close parentheses .
                                          Assess your score
                                            
                                          Key Concepts
                                          Cartesian Form