0%

DP IB Maths: AA HL

Topic Questions

Home / IB / Maths: AA HL / DP / Topic Questions / 2. Functions / 2.8 Inequalities


2.8 Inequalities

Question 1

Marks: 4

Consider the functions defined by f left parenthesis x right parenthesis equals x squared minus 6 a x plus b plus 10 and g left parenthesis x right parenthesis equals a x plus 2 b plus 3 commawhere a comma b element of Z to the power of plus. Given that f left parenthesis x right parenthesis less or equal than g left parenthesis x right parenthesis only for space 2 less or equal than x less or equal than 5 comma find the values of a and b.

 

    Assess your score
      
    Key Concepts
    Intersecting Graphs

    Question 2a

    Marks: 3

    The function defined by f left parenthesis x right parenthesis equals x to the power of 4 minus 12 x cubed plus 46 x squared minus 60 x plus 25 can be factorised into the form f left parenthesis x right parenthesis equals left parenthesis x minus a right parenthesis squared left parenthesis x minus b right parenthesis squared comma where a and b are positive integers such that a less than b.

    (a)
    Find the values of a and b.
      Assess your score
        

      Question 2b

      Marks: 3
      (b)
      Determine the set of values of that satisfy
      (i)
      f open parentheses x close parentheses greater or equal than 0,
      (ii)
      f open parentheses negative x close parentheses greater or equal than 0 comma
      (iii)
      negative f open parentheses x close parentheses less than 0.
        Assess your score
          

        Question 2c

        Marks: 2
        (c)
        Determine the smallest positive value k such that the solution to the inequality f open parentheses x close parentheses less or equal than k  is a single interval.

         

          Assess your score
            

          Question 3

          Marks: 5

          The function f is such that 

           f left parenthesis x right parenthesis greater or equal than 0 space space for space space x less or equal than 3 space space and space for space space 4 less or equal than x less or equal than 5 comma

          f left parenthesis x right parenthesis less or equal than 0 space space for space space 3 less or equal than x less or equal than 4 space space and space for space space x greater or equal than 5.

          Find a polynomial, of the lowest degree possible, that satisfies the condition f open parentheses 0 close parentheses equals 5.

            Assess your score
              

            Question 4a

            Marks: 3
            (a)
            Sketch the graph of y equals f open parentheses x close parentheses where
            f left parenthesis x right parenthesis equals fraction numerator left parenthesis x plus 2 right parenthesis left parenthesis x minus 4 right parenthesis left parenthesis x minus 6 right parenthesis over denominator left parenthesis x minus 1 right parenthesis left parenthesis x minus 5 right parenthesis end fraction    
                   
            Label any intersections with the coordinate axes and state the equations of any vertical asymptotes.
              Assess your score
                
              Key Concepts
              Graphing Functions

              Question 4b

              Marks: 5
              (b)
              Find the values of  x that satisfy
              (i)
              f left parenthesis x right parenthesis greater or equal than 0. space space space
              (ii)
              f left parenthesis vertical line x vertical line right parenthesis greater or equal than 0.

               

                Assess your score
                  

                Question 5

                Marks: 6

                The region R is defined by the three straight lines given by the inequalities

                y greater or equal than 1 comma space

                y less or equal than 2 x plus 8 comma space

                x plus y less or equal than 10.

                The function f is defined by f open parentheses x close parentheses equals 2 plus fraction numerator 1 over denominator x minus 1 end fraction. Find the largest domain of f such that the graph of f lies within the region R. Give answers as exact values where appropriate.

                  Assess your score
                    

                  Question 6a

                  Marks: 1
                  (a)
                  Consider the graphs with equations
                  y equals fraction numerator open parentheses x plus 4 close parentheses open parentheses x minus 1 close parentheses over denominator x minus 1 end fraction and space y equals 6 minus x
                  Explain why the two graphs do not intersect.
                    Assess your score
                      

                    Question 6b

                    Marks: 3
                    (b)
                    Consider the graphs with equations
                    y equals fraction numerator open parentheses x minus 6 close parentheses open parentheses x minus 1 close parentheses squared over denominator x minus 1 end fraction space and space y equals open parentheses 8 minus x close parentheses open parentheses x minus 1 close parentheses.
                    (i)

                    Find the coordinates of any points of intersections between the two graphs.

                    (ii)

                    Hence, or otherwise, solve the inequality

                    fraction numerator open parentheses x minus 6 close parentheses open parentheses x minus 1 close parentheses squared over denominator x minus 1 end fraction less or equal than open parentheses 8 minus x close parentheses open parentheses x minus 1 close parentheses.

                      Assess your score
                        

                      Question 7a

                      Marks: 3

                      Consider the functions defined by f left parenthesis x right parenthesis equals square root of left parenthesis 9 minus x squared right parenthesis end root comma space g left parenthesis x right parenthesis equals 3 minus square root of left parenthesis 9 minus x squared right parenthesis end root and h open parentheses x close parentheses equals fraction numerator x plus 3 over denominator 2 end fraction.All three functions have the domain negative 3 less or equal than x less or equal than 3. 

                      (a)
                      On the same diagram, sketch the graphs of f comma space g spaceand h.
                        Assess your score
                          
                        Key Concepts
                        Graphing Functions

                        Question 7b

                        Marks: 3
                        (b)
                        Find the set of values of x which satisfy the inequality f left parenthesis x right parenthesis greater than g left parenthesis x right parenthesis greater than h left parenthesis x right parenthesis.
                          Assess your score
                            

                          Question 8

                          Marks: 6

                          Find the exact values for x such that

                          fraction numerator x over denominator open parentheses x plus 2 close parentheses open parentheses x minus 3 close parentheses end fraction greater or equal than x

                           

                            Assess your score