DP Chemistry (first assessment 2025)
Syllabus sections »

Reactivity 1.4—Entropy and spontaneity (Additional higher level)

Description

[N/A]


Sub sections and their related questions

Reactivity 1.4.1—Entropy, S, is a measure of the dispersal or distribution of matter and/or energy in a system. The more ways the energy can be distributed, the higher the entropy. Under the same conditions, the entropy of a gas is greater than that of a liquid, which in turn is greater than that of a solid. Predict whether a physical or chemical change will result in an increase or decrease in entropy of a system. Calculate standard entropy changes, ΔS⦵, from standard entropy values, S⦵.

Reactivity 1.4.2—Change in Gibbs energy, ΔG, relates the energy that can be obtained from a chemical reaction to the change in enthalpy, ΔH, change in entropy, ΔS, and absolute temperature, T. Apply the equation ΔG⦵ = ΔH⦵ − TΔS⦵ to calculate unknown values of these terms.

Reactivity 1.4.3—At constant pressure, a change is spontaneous if the change in Gibbs energy, ΔG, is negative. Interpret the sign of ΔG calculated from thermodynamic data. Determine the temperature at which a reaction becomes spontaneous.

Reactivity 1.4.4—As a reaction approaches equilibrium, ΔG becomes less negative and finally reaches zero. Perform calculations using the equation ΔG = ΔG⦵ + RT lnQ and its application to a system at equilibrium ΔG⦵ = −RT lnK.