• IB
  • IB Docs (2) Team
    Logout
  • Maths
  • Biology
  • Chemistry
  • Physics
  • Combined Science
  • English Language
  • Geography
  • Other Subjects
GCSE Maths
Edexcel Topic QuestionsRevision NotesPast PapersPast Papers Questions
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast Papers
GCSE Biology
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE Physics
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE Combined Science
Edexcel Combined: Biology Topic QuestionsRevision NotesPast Papers
Edexcel Combined: Chemistry Topic QuestionsRevision NotesPast Papers
Edexcel Combined: Physics Revision NotesPast Papers
AQA Combined: Biology Topic QuestionsRevision NotesPast Papers
AQA Combined: Chemistry Topic QuestionsRevision NotesPast Papers
AQA Combined: Physics Topic QuestionsRevision NotesPast Papers
OCR Gateway Combined: Biology Topic QuestionsRevision Notes
OCR Gateway Combined: Chemistry Revision Notes
OCR Gateway Combined: Physics Revision Notes
GCSE English Language
AQA Revision NotesPractice PapersPast Papers
Edexcel Past Papers
OCR Past Papers
GCSE Geography
AQA Topic QuestionsRevision Notes
Edexcel Topic Questions
GCSE Other Subjects
AQA English LiteratureBusinessComputer ScienceEconomicsFurther MathsGeographyHistoryPsychologySociologyStatistics
Edexcel English LiteratureBusinessComputer ScienceGeographyHistoryPsychologyStatistics
OCR English LiteratureBusinessComputer ScienceEconomicsPsychology
OCR Gateway GeographyHistory
  • Maths
  • Biology
  • Chemistry
  • Physics
  • Double Science
  • Economics
  • English Language
  • Geography
  • Other Subjects
IGCSE Maths
Edexcel Topic QuestionsRevision NotesPast PapersBronze-Silver-Gold Questions
CIE (Extended) Topic QuestionsRevision NotesPast Papers
CIE (Core) Topic QuestionsPast Papers
IGCSE Biology
Edexcel Topic QuestionsRevision NotesPast Papers
CIE 2020-2022 Topic QuestionsRevision NotesPast Papers
CIE 2023-2025 Topic QuestionsRevision NotesPast Papers
IGCSE Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
CIE 2020-2022 Topic QuestionsRevision NotesPast Papers
CIE 2023-2025 Topic QuestionsRevision NotesPast Papers
IGCSE Physics
Edexcel Topic QuestionsRevision NotesPast Papers
CIE 2020-2022 Topic QuestionsRevision NotesPast Papers
CIE 2023-2025 Topic QuestionsRevision NotesPast Papers
IGCSE Double Science
Edexcel Double: Biology Topic QuestionsRevision NotesPast Papers
Edexcel Double: Chemistry Topic QuestionsRevision NotesPast Papers
Edexcel Double: Physics Topic QuestionsRevision NotesPast Papers
IGCSE Economics
CIE Topic QuestionsRevision NotesPast Papers
IGCSE English Language
CIE Revision NotesPractice PapersPast Papers
Edexcel Past Papers
IGCSE Geography
CIE Revision NotesTopic QuestionsPast Papers
Edexcel Topic QuestionsRevision NotesPast Papers
IGCSE Other Subjects
CIE Additional MathsEnglish LiteratureBusinessComputer ScienceHistorySociology
Edexcel English LiteratureBusinessComputer ScienceHistoryFurther Maths
  • Maths
  • Biology
  • Chemistry
  • Physics
  • English Language
  • Other Subjects
AS Maths
Edexcel Pure MathsMechanicsStatistics
AQA Pure MathsMechanicsStatistics
OCR Pure MathsMechanicsStatistics
CIE Pure 1Pure 2MechanicsProbability & Statistics 1
Edexcel IAS Pure 1Pure 2MechanicsStatistics
AS Biology
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS Chemistry
Edexcel Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision Notes
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS Physics
Edexcel Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS English Language
AQA Past Papers
Edexcel Past Papers
OCR Past Papers
AS Other Subjects
AQA BusinessComputer ScienceEconomicsEnglish LiteratureFurther MathsGeographyHistoryPsychologySociology
Edexcel BusinessEconomicsEnglish LiteratureFurther MathsGeographyHistoryPsychology
OCR BusinessComputer ScienceEconomicsEnglish LiteratureFurther Maths AGeographyHistoryPsychologySociology
CIE Further Maths
  • Maths
  • Biology
  • Chemistry
  • Physics
  • English Language
  • Economics
  • Further Maths
  • Psychology
  • Other Subjects
A Level Maths
Edexcel Pure MathsMechanicsStatistics
AQA Pure MathsMechanicsStatistics
OCR Pure MathsMechanicsStatistics
CIE Pure 1Pure 3MechanicsProbability & Statistics 1Probability & Statistics 2
Edexcel IAL Pure 1Pure 2Pure 3Pure 4Mechanics 1Mechanics 2Statistics 1Statistics 2Decision 1
A Level Biology
Edexcel Topic QuestionsPast Papers
Edexcel A (SNAB) Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast PapersGold Questions
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast PapersGold Questions
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level Physics
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level English Language
AQA Past Papers
CIE Past Papers
Edexcel Past Papers
OCR Past Papers
Edexcel IAL Past Papers
A Level Economics
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsPast Papers
OCR Past Papers
CIE Past Papers
A Level Further Maths
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Past Papers
OCR Past Papers
CIE Past Papers
Edexcel IAL Past Papers
A Level Psychology
AQA Topic QuestionsRevision NotesPast Papers
CIE Past Papers
Edexcel Past Papers
OCR Past Papers
Edexcel IAL Past Papers
A Level Other Subjects
AQA BusinessComputer ScienceEconomicsEnglish LiteratureGeographyHistorySociology
CIE BusinessComputer ScienceEconomicsEnglish LiteratureGeographySociology
Edexcel BusinessEconomics AEnglish LiteratureGeographyHistory
OCR BusinessComputer ScienceEconomicsEnglish LiteratureGeographyHistorySociology
Edexcel IAL English LiteratureGeography
CIE IAL History
  • Biology
  • Chemistry
  • Physics
  • Other Subjects
O Level Biology
CIE Topic QuestionsPast Papers
O Level Chemistry
CIE Topic QuestionsPast Papers
O Level Physics
CIE Topic QuestionsPast Papers
O Level Other Subjects
CIE Additional MathsMaths D
  • Maths
  • Biology
  • Chemistry
  • Physics
Pre U Maths
CIE Topic QuestionsPast Papers
Pre U Biology
CIE Topic QuestionsPast Papers
Pre U Chemistry
CIE Topic QuestionsPast Papers
Pre U Physics
CIE Topic QuestionsPast Papers
  • Maths
  • Biology
  • Chemistry
  • Physics
  • Economics
IB Maths
Maths: AA HL Topic QuestionsRevision NotesPractice Papers
Maths: AI HL Topic QuestionsRevision NotesPractice Papers
Maths: AA SL Topic QuestionsRevision NotesPractice Papers
Maths: AI SL Topic QuestionsRevision NotesPractice Papers
IB Biology
Biology: SL Topic QuestionsRevision NotesPractice Papers
Biology: HL Topic QuestionsRevision NotesPractice Papers
IB Chemistry
Chemistry: SL Topic QuestionsRevision NotesPractice Papers
Chemistry: HL Topic QuestionsRevision NotesPractice Papers
IB Physics
Physics: SL Topic QuestionsRevision NotesPractice Papers
Physics: HL Topic QuestionsRevision NotesPractice Papers
IB Economics
Economics: SL Revision Notes

DP IB Maths: AA SL

Revision Notes

Home / IB / Maths: AA SL / DP / Revision Notes / 2. Functions / 2.4 Further Functions & Graphs / 2.4.3 Solving Equations


2.4.3 Solving Equations


Solving Equations Analytically

How can I solve equations analytically where the unknown appears only once?

  • These equations can be solved by rearranging
  • For one-to-one functions you can just apply the inverse
    • Addition and subtraction are inverses
      • space y equals x plus k blank ⟺ x equals y minus k
    • Multiplication and division are inverses
      • space y equals k x blank ⟺ x equals y over k
    • Taking the reciprocal is a self-inverse
      • space y equals 1 over x blank ⟺ x equals 1 over y
    • Odd powers and roots are inverses
      • space y equals x to the power of n blank ⟺ x equals n-th root of y
      • space y equals x to the power of n blank ⟺ x equals y to the power of 1 over n end exponent
    • Exponentials and logarithms are inverses
      • space y equals a to the power of x blank ⟺ x equals log subscript a y
      • space y equals straight e to the power of x left right double arrow x equals ln space y
  • For many-to-one functions you will need to use your knowledge of the functions to find the other solutions
    • Even powers lead to positive and negative solutions
      • space y equals x to the power of n left right double arrow x equals plus-or-minus n-th root of y
    • Modulus functions lead to positive and negative solutions
      • space y equals open vertical bar x close vertical bar left right double arrow x equals plus-or-minus y
    • Trigonometric functions lead to infinite solutions using their symmetries
      • space y equals sin x left right double arrow x equals 2 k pi plus sin to the power of negative 1 end exponent y space space or space space space x equals left parenthesis 1 plus 2 k right parenthesis pi minus sin to the power of negative 1 end exponent y
      • space y equals cos x left right double arrow x equals 2 k pi plus-or-minus cos to the power of negative 1 end exponent y
      • space y equals tan x left right double arrow x equals k pi plus tan to the power of negative 1 end exponent y
  • Take care when you apply many-to-one functions to both sides of an equation as this can create additional solutions which are incorrect
    • For example: squaring both sides
      • x plus 1 equals 3 has one solution x equals 2
      • left parenthesis x plus 1 right parenthesis squared equals 3 to the power of 2 end exponent has two solutions x equals 2 and x equals negative 4
  • Always check your solutions by substituting back into the original equation

How can I solve equations analytically where the unknown appears more than once?

  • Sometimes it is possible to simplify expressions to make the unknown appear only once
  • Collect all terms involving x on one side and try to simplify into one term
    • For exponents use
      • a to the power of f left parenthesis x right parenthesis end exponent cross times a to the power of g left parenthesis x right parenthesis end exponent equals a to the power of f left parenthesis x right parenthesis plus g left parenthesis x right parenthesis end exponent
      • a to the power of f left parenthesis x right parenthesis end exponent over a to the power of g left parenthesis x right parenthesis end exponent equals a to the power of f left parenthesis x stretchy right parenthesis minus g left parenthesis x stretchy right parenthesis end exponent
      • open parentheses a to the power of f left parenthesis x right parenthesis end exponent close parentheses to the power of g left parenthesis x right parenthesis end exponent equals a to the power of f open parentheses x close parentheses cross times g left parenthesis x right parenthesis end exponent
      • a to the power of f open parentheses x close parentheses end exponent equals straight e to the power of f open parentheses x close parentheses ln space a end exponent
    • For logarithms use
      • log subscript a invisible function application f left parenthesis x right parenthesis plus log subscript a invisible function application g left parenthesis x right parenthesis equals log subscript a invisible function application open parentheses f open parentheses x close parentheses cross times g open parentheses x close parentheses close parentheses
      • log subscript a invisible function application f left parenthesis x right parenthesis minus log subscript a invisible function application g left parenthesis x right parenthesis equals log subscript a invisible function application open parentheses fraction numerator f open parentheses x close parentheses over denominator g open parentheses x close parentheses end fraction close parentheses
      • n log subscript a invisible function application f left parenthesis x right parenthesis equals log subscript a invisible function application stretchy left parenthesis f open parentheses x close parentheses stretchy right parenthesis to the power of n

How can I solve equations analytically when the equation can't be simplified?

  • Sometimes it is not possible to simplify equations
  • Most of these equations cannot be solved analytically
  • A special case that can be solved is where the equation can be transformed into a quadratic using a substitution
    • These will have three terms and involve the same type of function
  • Identify the suitable substitution by considering which function is a square of another
    • For example: the following can be transformed into 2 y squared plus 3 y minus 4 equals 0
      • 2 x to the power of 4 plus 3 x squared minus 4 equals 0 using space y equals x squared
      • 2 x plus 3 square root of x minus 4 equals 0 using space y equals square root of x
      • 2 over x to the power of 6 plus 3 over x cubed minus 4 equals 0 using space y equals 1 over x cubed
      • 2 straight e to the power of 2 x end exponent plus 3 straight e to the power of x minus 4 equals 0 using space y equals straight e to the power of x 
      • 2 cross times 25 to the power of x plus 3 cross times 5 to the power of x minus 4 equals 0 using space y equals 5 to the power of x
      • 2 to the power of 2 x plus 1 end exponent plus 3 cross times 2 to the power of x minus 4 equals 0 using space y equals 2 to the power of x
      • 2 open parentheses x cubed minus 1 close parentheses squared plus 3 open parentheses x cubed minus 1 close parentheses minus 4 equals 0 using space y equals x cubed minus 1
  • To solve:
    • Make the substitution space y equals f left parenthesis x right parenthesis
    • Solve the quadratic equation a y squared plus b y plus c equals 0 to get y1 & y2
    • Solve space f left parenthesis x right parenthesis equals y subscript 1 and space f left parenthesis x right parenthesis equals y subscript 2
      • Note that some equations might have zero or several solutions

Can I divide both sides of an equation by an expression?

  • When dividing by an expression you must consider whether the expression could be zero
  • Dividing by an expression that could be zero could result in you losing solutions to the original equation
    • For example: left parenthesis x plus 1 right parenthesis left parenthesis 2 x minus 1 right parenthesis equals 3 left parenthesis x plus 1 right parenthesis
      • If you divide both sides by left parenthesis x plus 1 right parenthesis you get 2 x minus 1 equals 3 which gives x equals 2
      • However x equals negative 1 is also a solution to the original equation
  • To ensure you do not lose solutions you can:
    • Split the equation into two equations
      • One where the dividing expression equals zero: x plus 1 equals 0
      • One where the equation has been divided by the expression: 2 x minus 1 equals 3
    • Make the equation equal zero and factorise
      • left parenthesis x plus 1 right parenthesis left parenthesis 2 x minus 1 right parenthesis minus 3 left parenthesis x plus 1 right parenthesis equals 0
      • left parenthesis x plus 1 right parenthesis left parenthesis 2 x minus 1 minus 3 right parenthesis equals 0 which gives left parenthesis x plus 1 right parenthesis left parenthesis 2 x minus 4 right parenthesis equals 0
      • Set each factor equal to zero and solve: x plus 1 equals 0 and 2 x minus 4 equals 0

Exam Tip

  • A common mistake that students make in exams is applying functions to each term rather than to each side
    • For example: Starting with the equation ln x plus ln open parentheses x minus 1 close parentheses equals 5 it would be incorrect to write straight e to the power of ln x end exponent plus straight e to the power of ln open parentheses x minus 1 close parentheses end exponent equals straight e to the power of 5 or x plus left parenthesis x minus 1 right parenthesis equals straight e to the power of 5
    • Instead it would be correct to write straight e to the power of ln x plus ln open parentheses x minus 1 close parentheses end exponent equals straight e to the power of 5 and then simplify from there

Worked Example

Find the exact solutions for the following equations:

a)
5 minus 2 log subscript 4 x equals 0.

2-4-3-ib-aa-sl-solve-analytically-a-we-solution

b)
x equals square root of x plus 2 end root.

2-4-3-ib-aa-sl-solve-analytically-b-we-solution

c)
straight e to the power of 2 x end exponent minus 4 straight e to the power of x minus 5 equals 0.

2-4-3-ib-aa-sl-solve-analytically-c-we-solution

Solving Equations Graphically

How can I solve equations graphically?

  • To solve space f left parenthesis x right parenthesis equals g left parenthesis x right parenthesis
    • One method is to draw the graphs space y equals f left parenthesis x right parenthesis and space y equals g left parenthesis x right parenthesis
      • The solutions are the x-coordinates of the points of intersection
    • Another method is to draw the graph space y equals f left parenthesis x right parenthesis minus g left parenthesis x right parenthesis or space y equals g left parenthesis x right parenthesis minus f left parenthesis x right parenthesis
      • The solutions are the roots (zeros) of this graph
        • This method is sometimes quicker as it involves drawing only one graph

Why do I need to solve equations graphically?

  • Some equations cannot be solved analytically
    • Polynomials of degree higher than 4
      • x to the power of 5 minus x plus 1 equals 0
    • Equations involving different types of functions
      • straight e to the power of x equals x squared

Exam Tip

  • On a calculator paper you are allowed to solve equations using your GDC unless the question asks for an algebraic method
  • If your answer needs to be an exact value then you might need to solve analytically to get the exact value

Worked Example

a)
Sketch the graph y equals straight e to the power of x minus x squared.

2-4-3-ib-aa-sl-solve-graphically-a-we-solution

b)
Hence find the solution to straight e to the power of x equals x squared.

2-4-3-ib-aa-sl-solve-graphically-b-we-solution



  • 1. Number & Algebra
    • 1.1 Number Toolkit
      • 1.1.1 Standard Form
        • 1.1.2 Laws of Indices
        • 1.2 Exponentials & Logs
          • 1.2.1 Introduction to Logarithms
            • 1.2.2 Laws of Logarithms
              • 1.2.3 Solving Exponential Equations
              • 1.3 Sequences & Series
                • 1.3.1 Language of Sequences & Series
                  • 1.3.2 Arithmetic Sequences & Series
                    • 1.3.3 Geometric Sequences & Series
                      • 1.3.4 Applications of Sequences & Series
                        • 1.3.5 Compound Interest & Depreciation
                        • 1.4 Proof & Reasoning
                          • 1.4.1 Proof
                          • 1.5 Binomial Theorem
                            • 1.5.1 Binomial Theorem
                          • 2. Functions
                            • 2.1 Linear Functions & Graphs
                              • 2.1.1 Equations of a Straight Line
                              • 2.2 Quadratic Functions & Graphs
                                • 2.2.1 Quadratic Functions
                                  • 2.2.2 Factorising & Completing the Square
                                    • 2.2.3 Solving Quadratics
                                      • 2.2.4 Quadratic Inequalities
                                        • 2.2.5 Discriminants
                                        • 2.3 Functions Toolkit
                                          • 2.3.1 Language of Functions
                                            • 2.3.2 Composite & Inverse Functions
                                              • 2.3.3 Graphing Functions
                                              • 2.4 Further Functions & Graphs
                                                • 2.4.1 Reciprocal & Rational Functions
                                                  • 2.4.2 Exponential & Logarithmic Functions
                                                    • 2.4.3 Solving Equations
                                                      • 2.4.4 Modelling with Functions
                                                      • 2.5 Transformations of Graphs
                                                        • 2.5.1 Translations of Graphs
                                                          • 2.5.2 Reflections of Graphs
                                                            • 2.5.3 Stretches of Graphs
                                                              • 2.5.4 Composite Transformations of Graphs
                                                            • 3. Geometry & Trigonometry
                                                              • 3.1 Geometry Toolkit
                                                                • 3.1.1 Coordinate Geometry
                                                                  • 3.1.2 Radian Measure
                                                                    • 3.1.3 Arcs & Sectors
                                                                    • 3.2 Geometry of 3D Shapes
                                                                      • 3.2.1 3D Coordinate Geometry
                                                                        • 3.2.2 Volume & Surface Area
                                                                        • 3.3 Trigonometry
                                                                          • 3.3.1 Pythagoras & Right-Angled Triganometry
                                                                            • 3.3.2 Non Right-Angled Trigonometry
                                                                              • 3.3.3 Applications of Trigonometry & Pythagoras
                                                                              • 3.4 Further Trigonometry
                                                                                • 3.4.1 The Unit Circle
                                                                                  • 3.4.2 Exact Values
                                                                                  • 3.5 Trigonometric Functions & Graphs
                                                                                    • 3.5.1 Graphs of Trigonometric Functions
                                                                                      • 3.5.2 Transformations of Trigonometric Functions
                                                                                        • 3.5.3 Modelling with Trigonometric Functions
                                                                                        • 3.6 Trigonometric Equations & Identities
                                                                                          • 3.6.1 Simple Identities
                                                                                            • 3.6.2 Double Angle Formulae
                                                                                              • 3.6.3 Relationship Between Trigonometric Ratios
                                                                                                • 3.6.4 Linear Trigonometric Equations
                                                                                                  • 3.6.5 Quadratic Trigonometric Equations
                                                                                                • 4. Statistics & Probability
                                                                                                  • 4.1 Statistics Toolkit
                                                                                                    • 4.1.1 Sampling & Data Collection
                                                                                                      • 4.1.2 Statistical Measures
                                                                                                        • 4.1.3 Frequency Tables
                                                                                                          • 4.1.4 Linear Tranformations of Data
                                                                                                            • 4.1.5 Outliers
                                                                                                              • 4.1.6 Univariate Data
                                                                                                                • 4.1.7 Interpreting Data
                                                                                                                • 4.2 Correlation & Regression
                                                                                                                  • 4.2.1 Bivariate Data
                                                                                                                    • 4.2.2 Correlation & Regression
                                                                                                                    • 4.3 Probability
                                                                                                                      • 4.3.1 Probability & Types of Events
                                                                                                                        • 4.3.2 Conditional Probability
                                                                                                                          • 4.3.3 Sample Space Diagrams
                                                                                                                          • 4.4 Probability Distributions
                                                                                                                            • 4.4.1 Discrete Probability Distributions
                                                                                                                              • 4.4.2 Expected Values
                                                                                                                              • 4.5 Binomial Distribution
                                                                                                                                • 4.5.1 The Binomial Distribution
                                                                                                                                  • 4.5.2 Calculating Binomial Probabilities
                                                                                                                                  • 4.6 Normal Distribution
                                                                                                                                    • 4.6.1 The Normal Distribution
                                                                                                                                      • 4.6.2 Calculations with Normal Distribution
                                                                                                                                        • 4.6.3 Standardisation of Normal Variables
                                                                                                                                      • 5. Calculus
                                                                                                                                        • 5.1 Differentiation
                                                                                                                                          • 5.1.1 Introduction to Differentiation
                                                                                                                                            • 5.1.2 Applications of Differentiation
                                                                                                                                            • 5.2 Further Differentiation
                                                                                                                                              • 5.2.1 Differentiating Special Functions
                                                                                                                                                • 5.2.2 Techniques of Differentiation
                                                                                                                                                  • 5.2.3 Second Order Derivatives
                                                                                                                                                    • 5.2.4 Further Applications of Differentiation
                                                                                                                                                      • 5.2.5 Concavity & Points of Inflection
                                                                                                                                                        • 5.2.6 Derivatives & Graphs
                                                                                                                                                        • 5.3 Integration
                                                                                                                                                          • 5.3.1 Introduction to Integration
                                                                                                                                                            • 5.3.2 Applications of Integration
                                                                                                                                                            • 5.4 Further Integration
                                                                                                                                                              • 5.4.1 Integrating Special Functions
                                                                                                                                                                • 5.4.2 Techniques of Integration
                                                                                                                                                                  • 5.4.3 Definite Integrals
                                                                                                                                                                    • 5.4.4 Further Applications of Integration
                                                                                                                                                                    • 5.5 Optimisation
                                                                                                                                                                      • 5.5.1 Modelling with Differentiation
                                                                                                                                                                      • 5.6 Kinematics
                                                                                                                                                                        • 5.6.1 Kinematics Toolkit
                                                                                                                                                                          • 5.6.2 Calculus for Kinematics
                                                                                                                                                                        Daniel Finlay

                                                                                                                                                                        Author: Daniel

                                                                                                                                                                        Dan graduated from the University of Oxford with a First class degree in mathematics. As well as teaching maths for over 8 years, Dan has marked a range of exams for Edexcel, tutored students and taught A Level Accounting. Dan has a keen interest in statistics and probability and their real-life applications.


                                                                                                                                                                        Save My Exams Logo
                                                                                                                                                                        Resources
                                                                                                                                                                        Home Join Support

                                                                                                                                                                        Members
                                                                                                                                                                        Members Home Account Logout

                                                                                                                                                                        Company
                                                                                                                                                                        About Us Contact Us Jobs Terms Privacy Facebook Twitter

                                                                                                                                                                        Quick Links
                                                                                                                                                                        GCSE Revision Notes IGCSE Revision Notes A Level Revision Notes Biology Chemistry Physics Maths 2022 Advance Information

                                                                                                                                                                         
                                                                                                                                                                        © IB Documents (2) Team & u/aimlesskr
                                                                                                                                                                        IBO was not involved in the production of, and does not endorse, the resources created by Save My Exams.