• IB
  • IB Docs (2) Team
    Logout
  • Maths
  • Biology
  • Chemistry
  • Physics
  • Combined Science
  • English Language
  • Geography
  • Other Subjects
GCSE Maths
Edexcel Topic QuestionsRevision NotesPast PapersPast Papers Questions
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast Papers
GCSE Biology
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE Physics
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE Combined Science
Edexcel Combined: Biology Topic QuestionsRevision NotesPast Papers
Edexcel Combined: Chemistry Topic QuestionsRevision NotesPast Papers
Edexcel Combined: Physics Revision NotesPast Papers
AQA Combined: Biology Topic QuestionsRevision NotesPast Papers
AQA Combined: Chemistry Topic QuestionsRevision NotesPast Papers
AQA Combined: Physics Topic QuestionsRevision NotesPast Papers
OCR Gateway Combined: Biology Topic QuestionsRevision Notes
OCR Gateway Combined: Chemistry Revision Notes
OCR Gateway Combined: Physics Revision Notes
GCSE English Language
AQA Revision NotesPractice PapersPast Papers
Edexcel Past Papers
OCR Past Papers
GCSE Geography
AQA Topic QuestionsRevision Notes
Edexcel Topic Questions
GCSE Other Subjects
AQA English LiteratureBusinessComputer ScienceEconomicsFurther MathsGeographyHistoryPsychologySociologyStatistics
Edexcel English LiteratureBusinessComputer ScienceGeographyHistoryPsychologyStatistics
OCR English LiteratureBusinessComputer ScienceEconomicsPsychology
OCR Gateway GeographyHistory
  • Maths
  • Biology
  • Chemistry
  • Physics
  • Double Science
  • Economics
  • English Language
  • Geography
  • Other Subjects
IGCSE Maths
Edexcel Topic QuestionsRevision NotesPast PapersBronze-Silver-Gold Questions
CIE (Extended) Topic QuestionsRevision NotesPast Papers
CIE (Core) Topic QuestionsPast Papers
IGCSE Biology
Edexcel Topic QuestionsRevision NotesPast Papers
CIE 2020-2022 Topic QuestionsRevision NotesPast Papers
CIE 2023-2025 Topic QuestionsRevision NotesPast Papers
IGCSE Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
CIE 2020-2022 Topic QuestionsRevision NotesPast Papers
CIE 2023-2025 Topic QuestionsRevision NotesPast Papers
IGCSE Physics
Edexcel Topic QuestionsRevision NotesPast Papers
CIE 2020-2022 Topic QuestionsRevision NotesPast Papers
CIE 2023-2025 Topic QuestionsRevision NotesPast Papers
IGCSE Double Science
Edexcel Double: Biology Topic QuestionsRevision NotesPast Papers
Edexcel Double: Chemistry Topic QuestionsRevision NotesPast Papers
Edexcel Double: Physics Topic QuestionsRevision NotesPast Papers
IGCSE Economics
CIE Topic QuestionsRevision NotesPast Papers
IGCSE English Language
CIE Revision NotesPractice PapersPast Papers
Edexcel Past Papers
IGCSE Geography
CIE Revision NotesTopic QuestionsPast Papers
Edexcel Topic QuestionsRevision NotesPast Papers
IGCSE Other Subjects
CIE Additional MathsEnglish LiteratureBusinessComputer ScienceHistorySociology
Edexcel English LiteratureBusinessComputer ScienceHistoryFurther Maths
  • Maths
  • Biology
  • Chemistry
  • Physics
  • English Language
  • Other Subjects
AS Maths
Edexcel Pure MathsMechanicsStatistics
AQA Pure MathsMechanicsStatistics
OCR Pure MathsMechanicsStatistics
CIE Pure 1Pure 2MechanicsProbability & Statistics 1
Edexcel IAS Pure 1Pure 2MechanicsStatistics
AS Biology
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS Chemistry
Edexcel Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision Notes
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS Physics
Edexcel Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS English Language
AQA Past Papers
Edexcel Past Papers
OCR Past Papers
AS Other Subjects
AQA BusinessComputer ScienceEconomicsEnglish LiteratureFurther MathsGeographyHistoryPsychologySociology
Edexcel BusinessEconomicsEnglish LiteratureFurther MathsGeographyHistoryPsychology
OCR BusinessComputer ScienceEconomicsEnglish LiteratureFurther Maths AGeographyHistoryPsychologySociology
CIE Further Maths
  • Maths
  • Biology
  • Chemistry
  • Physics
  • English Language
  • Economics
  • Further Maths
  • Psychology
  • Other Subjects
A Level Maths
Edexcel Pure MathsMechanicsStatistics
AQA Pure MathsMechanicsStatistics
OCR Pure MathsMechanicsStatistics
CIE Pure 1Pure 3MechanicsProbability & Statistics 1Probability & Statistics 2
Edexcel IAL Pure 1Pure 2Pure 3Pure 4Mechanics 1Mechanics 2Statistics 1Statistics 2Decision 1
A Level Biology
Edexcel Topic QuestionsPast Papers
Edexcel A (SNAB) Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast PapersGold Questions
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast PapersGold Questions
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level Physics
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level English Language
AQA Past Papers
CIE Past Papers
Edexcel Past Papers
OCR Past Papers
Edexcel IAL Past Papers
A Level Economics
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsPast Papers
OCR Past Papers
CIE Past Papers
A Level Further Maths
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Past Papers
OCR Past Papers
CIE Past Papers
Edexcel IAL Past Papers
A Level Psychology
AQA Topic QuestionsRevision NotesPast Papers
CIE Past Papers
Edexcel Past Papers
OCR Past Papers
Edexcel IAL Past Papers
A Level Other Subjects
AQA BusinessComputer ScienceEconomicsEnglish LiteratureGeographyHistorySociology
CIE BusinessComputer ScienceEconomicsEnglish LiteratureGeographySociology
Edexcel BusinessEconomics AEnglish LiteratureGeographyHistory
OCR BusinessComputer ScienceEconomicsEnglish LiteratureGeographyHistorySociology
Edexcel IAL English LiteratureGeography
CIE IAL History
  • Biology
  • Chemistry
  • Physics
  • Other Subjects
O Level Biology
CIE Topic QuestionsPast Papers
O Level Chemistry
CIE Topic QuestionsPast Papers
O Level Physics
CIE Topic QuestionsPast Papers
O Level Other Subjects
CIE Additional MathsMaths D
  • Maths
  • Biology
  • Chemistry
  • Physics
Pre U Maths
CIE Topic QuestionsPast Papers
Pre U Biology
CIE Topic QuestionsPast Papers
Pre U Chemistry
CIE Topic QuestionsPast Papers
Pre U Physics
CIE Topic QuestionsPast Papers
  • Maths
  • Biology
  • Chemistry
  • Physics
  • Economics
IB Maths
Maths: AA HL Topic QuestionsRevision NotesPractice Papers
Maths: AI HL Topic QuestionsRevision NotesPractice Papers
Maths: AA SL Topic QuestionsRevision NotesPractice Papers
Maths: AI SL Topic QuestionsRevision NotesPractice Papers
IB Biology
Biology: SL Topic QuestionsRevision NotesPractice Papers
Biology: HL Topic QuestionsRevision NotesPractice Papers
IB Chemistry
Chemistry: SL Topic QuestionsRevision NotesPractice Papers
Chemistry: HL Topic QuestionsRevision NotesPractice Papers
IB Physics
Physics: SL Topic QuestionsRevision NotesPractice Papers
Physics: HL Topic QuestionsRevision NotesPractice Papers
IB Economics
Economics: SL Revision Notes

DP IB Maths: AA SL

Revision Notes

Home / IB / Maths: AA SL / DP / Revision Notes / 5. Calculus / 5.4 Further Integration / 5.4.2 Techniques of Integration


5.4.2 Techniques of Integration


Integrating Composite Functions (ax+b)

What is a composite function?

  • A composite function involves one function being applied after another
  • A composite function may be described as a “function of a function”
  • This Revision Note focuses on one of the functions being linear – i.e. of the formbold space bold italic a bold italic x bold plus bold italic b

How do I integrate linear (ax+b) functions?

  • A linear function (ofspace x) is of the formspace a x plus b
  • The special cases for trigonometric functions and exponential and logarithm functions are
    •  space integral sin left parenthesis a x plus b right parenthesis space straight d x equals negative 1 over a cos left parenthesis a x plus b right parenthesis plus c
    •  space integral cos left parenthesis a x plus b right parenthesis space straight d x equals 1 over a sin left parenthesis a x plus b right parenthesis plus c
    • space integral straight e to the power of a x plus b end exponent space straight d x equals 1 over a straight e to the power of a x plus b end exponent plus c
    • space integral fraction numerator 1 over denominator a x plus b end fraction space straight d x equals 1 over a ln open vertical bar a x plus b close vertical bar plus c
  • There is one more special case
    • space integral left parenthesis a x plus b right parenthesis to the power of n space straight d x equals fraction numerator 1 over denominator a left parenthesis n plus 1 right parenthesis end fraction left parenthesis a x plus b right parenthesis to the power of n plus 1 end exponent plus c where space n element of straight rational numbers comma space n not equal to negative 1
  • space c, in all cases, is the constant of integration
  • All the above can be deduced using reverse chain rule
    • However, spotting them can make solutions more efficient

Exam Tip

  • Although the specific formulae in this revision note are NOT  in the formula booklet
    • almost all of the information you will need to apply reverse chain rule is provided
    • make sure you have the formula booklet open at the right page(s) and practice using it

Worked Example

Find the following integrals

a)      space integral 3 left parenthesis 7 minus 2 x right parenthesis to the power of 5 over 3 end exponent space straight d x

5-4-2-ib-sl-aa-only-we1-soltn-a

b)      space integral 1 half cos left parenthesis 3 x minus 2 right parenthesis space straight d x

5-4-2-ib-sl-aa-only-we1-soltn-b

Reverse Chain Rule

What is reverse chain rule?

  • The Chain Rule is a way of differentiating two (or more) functions
  • Reverse Chain Rule (RCR) refers to integrating by inspection
    • spotting that chain rule would be used in the reverse (differentiating) process

How do I know when to use reverse chain rule?

  • Reverse chain rule is used when we have the product of a composite function and the derivative of its second function
  • Integration is trickier than differentiation; many of the shortcuts do not work
    • For example, in general integral e to the power of f left parenthesis x right parenthesis end exponent space straight d x not equal to fraction numerator 1 over denominator f apostrophe left parenthesis x right parenthesis end fraction e to the power of f left parenthesis x right parenthesis end exponent
    • However, this result is true ifspace f left parenthesis x right parenthesis is linearspace left parenthesis a x plus b right parenthesis
  • Formally, in function notation, reverse chain rule is used for integrands of the form

I equals integral g apostrophe left parenthesis x right parenthesis f stretchy left parenthesis g left parenthesis x right parenthesis stretchy right parenthesis space straight d x 

    • this does not have to be strictly true, but ‘algebraically’ it should be
      • if coefficients do not match ‘adjust and compensate’ can be used
      • e.g. space 5 x squared is not quite the derivative ofspace 4 x cubed
        • the algebraic partspace left parenthesis x squared right parenthesis is 'correct'
        • but the coefficient 5 is ‘wrong’
        • use ‘adjust and compensate’ to ‘correct’ it
  • A particularly useful instance of reverse chain rule to recognise is

I equals integral fraction numerator f apostrophe left parenthesis x right parenthesis over denominator f left parenthesis x right parenthesis end fraction space straight d x equals ln space vertical line f left parenthesis x right parenthesis vertical line plus c

    • i.e.  the numerator is (almost) the derivative of the denominator
    • 'adjust and compensate' may need to be used to deal with any coefficients
      • e.g.  I equals integral fraction numerator x squared plus 1 over denominator x cubed plus 3 x end fraction space space straight d x equals 1 third integral 3 fraction numerator x squared plus 1 over denominator x cubed plus 3 x end fraction space space straight d x equals 1 third integral fraction numerator 3 x squared plus 3 over denominator x cubed plus 3 x end fraction space space straight d x equals 1 third ln space vertical line x cubed plus 3 x vertical line plus c

How do I integrate using reverse chain rule?

  • If the product can be identified, the integration can be done “by inspection”
    • there may be some “adjusting and compensating” to do
  • Notice a lot of the "adjust and compensate method” happens mentally
    • this is indicated in the steps below by quote marks 

STEP 1
Spot the ‘main’ function
e.g. space I equals integral x left parenthesis 5 x squared minus 2 right parenthesis to the power of 6 space straight d x
"the main function isspace left parenthesis space... space right parenthesis to the power of 6 which would come fromspace left parenthesis space... space right parenthesis to the power of 7”
 
STEP 2
‘Adjust’ and ‘compensate’ any coefficients required in the integral
e.g.  "space left parenthesis space... space right parenthesis to the power of 7 would differentiate to 7 left parenthesis space... space right parenthesis to the power of 6"
“chain rule says multiply by the derivative ofspace 5 x squared minus 2, which isspace 10 x”
“there is no '7' or ‘10’ in the integrand so adjust and compensate”
space I equals 1 over 7 cross times 1 over 10 cross times integral 7 cross times 10 cross times x left parenthesis 5 x squared minus 2 right parenthesis to the power of 6 space straight d x
 
STEP 3
Integrate and simplify
e.g. space I equals 1 over 7 cross times 1 over 10 cross times left parenthesis 5 x squared minus 2 right parenthesis to the power of 7 plus c
space I equals 1 over 70 left parenthesis 5 x squared minus 2 right parenthesis to the power of 7 plus c
 
  • Differentiation can be used as a means of checking the final answer
  • After some practice, you may find Step 2 is not needed
    • Do use it on more awkward questions (negatives and fractions!)
  • If the product cannot easily be identified, use substitution

Exam Tip

  • Before the exam, practice this until you are confident with the pattern and do not need to worry about the formula or steps anymore
    • This will save time in the exam
  • You can always check your work by differentiating, if you have time

Worked Example

A curve has the gradient functionspace f apostrophe left parenthesis x right parenthesis equals 5 x squared sin left parenthesis 2 x cubed right parenthesis.

Given that the curve passes through the pointspace left parenthesis 0 comma space 1 right parenthesis, find an expression forspace straight f left parenthesis x right parenthesis.

iiq~htJ9_5-4-2-ib-sl-aa-only-we2-soltn

Substitution: Reverse Chain Rule

What is integration by substitution?

  • When reverse chain rule is difficult to spot or awkward to use then integration by substitution can be used
    • substitution simplifies the integral by defining an alternative variable (usuallyspace u) in terms of the original variable (usuallyspace x)
    • everything (including “straight d x” and limits for definite integrals) is then substituted which makes the integration much easier

How do I integrate using substitution?

STEP 1
Identify the substitution to be used – it will be the secondary function in the composite function

Sospace g left parenthesis x right parenthesis inspace f left parenthesis g left parenthesis x right parenthesis right parenthesis andspace u equals g left parenthesis x right parenthesis

STEP 2
Differentiate the substitution and rearrange

fraction numerator straight d u over denominator straight d x end fractioncan be treated like a fraction
(i.e. “multiply byspace straight d x” to get rid of fractions)

STEP 3
Replace all parts of the integral
Allspace x terms should be replaced with equivalentspace u terms, includingspace straight d x
If finding a definite integral change the limits fromspace x-values tospace u-values too

STEP 4
Integrate and either
substitutespace x back in
or
evaluate the definte integral using thespace u limits (either using a GDC or manually)

STEP 5
Findspace c, the constant of integration, if needed

  • For definite integrals, a GDC should be able to process the integral without the need for a substitution
    • be clear about whether working is required or not in a question

Exam Tip

  • Use your GDC to check the value of a definite integral, even in cases where working needs to be shown

Worked Example

a)
Find the integral

space integral fraction numerator 6 x plus 5 over denominator left parenthesis 3 x squared plus 5 x minus 1 right parenthesis cubed end fraction space straight d x

5-4-2-ib-sl-aa-only-we3-soltn-a

b)
Evaluate the integral

           space integral subscript 1 superscript 2 fraction numerator 6 x plus 5 over denominator left parenthesis 3 x squared plus 5 x minus 1 right parenthesis cubed end fraction space straight d x

giving your answer as an exact fraction in its simplest terms.

5-4-2-ib-sl-aa-only-we3-soltn-b



  • 1. Number & Algebra
    • 1.1 Number Toolkit
      • 1.1.1 Standard Form
        • 1.1.2 Laws of Indices
        • 1.2 Exponentials & Logs
          • 1.2.1 Introduction to Logarithms
            • 1.2.2 Laws of Logarithms
              • 1.2.3 Solving Exponential Equations
              • 1.3 Sequences & Series
                • 1.3.1 Language of Sequences & Series
                  • 1.3.2 Arithmetic Sequences & Series
                    • 1.3.3 Geometric Sequences & Series
                      • 1.3.4 Applications of Sequences & Series
                        • 1.3.5 Compound Interest & Depreciation
                        • 1.4 Proof & Reasoning
                          • 1.4.1 Proof
                          • 1.5 Binomial Theorem
                            • 1.5.1 Binomial Theorem
                          • 2. Functions
                            • 2.1 Linear Functions & Graphs
                              • 2.1.1 Equations of a Straight Line
                              • 2.2 Quadratic Functions & Graphs
                                • 2.2.1 Quadratic Functions
                                  • 2.2.2 Factorising & Completing the Square
                                    • 2.2.3 Solving Quadratics
                                      • 2.2.4 Quadratic Inequalities
                                        • 2.2.5 Discriminants
                                        • 2.3 Functions Toolkit
                                          • 2.3.1 Language of Functions
                                            • 2.3.2 Composite & Inverse Functions
                                              • 2.3.3 Graphing Functions
                                              • 2.4 Further Functions & Graphs
                                                • 2.4.1 Reciprocal & Rational Functions
                                                  • 2.4.2 Exponential & Logarithmic Functions
                                                    • 2.4.3 Solving Equations
                                                      • 2.4.4 Modelling with Functions
                                                      • 2.5 Transformations of Graphs
                                                        • 2.5.1 Translations of Graphs
                                                          • 2.5.2 Reflections of Graphs
                                                            • 2.5.3 Stretches of Graphs
                                                              • 2.5.4 Composite Transformations of Graphs
                                                            • 3. Geometry & Trigonometry
                                                              • 3.1 Geometry Toolkit
                                                                • 3.1.1 Coordinate Geometry
                                                                  • 3.1.2 Radian Measure
                                                                    • 3.1.3 Arcs & Sectors
                                                                    • 3.2 Geometry of 3D Shapes
                                                                      • 3.2.1 3D Coordinate Geometry
                                                                        • 3.2.2 Volume & Surface Area
                                                                        • 3.3 Trigonometry
                                                                          • 3.3.1 Pythagoras & Right-Angled Triganometry
                                                                            • 3.3.2 Non Right-Angled Trigonometry
                                                                              • 3.3.3 Applications of Trigonometry & Pythagoras
                                                                              • 3.4 Further Trigonometry
                                                                                • 3.4.1 The Unit Circle
                                                                                  • 3.4.2 Exact Values
                                                                                  • 3.5 Trigonometric Functions & Graphs
                                                                                    • 3.5.1 Graphs of Trigonometric Functions
                                                                                      • 3.5.2 Transformations of Trigonometric Functions
                                                                                        • 3.5.3 Modelling with Trigonometric Functions
                                                                                        • 3.6 Trigonometric Equations & Identities
                                                                                          • 3.6.1 Simple Identities
                                                                                            • 3.6.2 Double Angle Formulae
                                                                                              • 3.6.3 Relationship Between Trigonometric Ratios
                                                                                                • 3.6.4 Linear Trigonometric Equations
                                                                                                  • 3.6.5 Quadratic Trigonometric Equations
                                                                                                • 4. Statistics & Probability
                                                                                                  • 4.1 Statistics Toolkit
                                                                                                    • 4.1.1 Sampling & Data Collection
                                                                                                      • 4.1.2 Statistical Measures
                                                                                                        • 4.1.3 Frequency Tables
                                                                                                          • 4.1.4 Linear Tranformations of Data
                                                                                                            • 4.1.5 Outliers
                                                                                                              • 4.1.6 Univariate Data
                                                                                                                • 4.1.7 Interpreting Data
                                                                                                                • 4.2 Correlation & Regression
                                                                                                                  • 4.2.1 Bivariate Data
                                                                                                                    • 4.2.2 Correlation & Regression
                                                                                                                    • 4.3 Probability
                                                                                                                      • 4.3.1 Probability & Types of Events
                                                                                                                        • 4.3.2 Conditional Probability
                                                                                                                          • 4.3.3 Sample Space Diagrams
                                                                                                                          • 4.4 Probability Distributions
                                                                                                                            • 4.4.1 Discrete Probability Distributions
                                                                                                                              • 4.4.2 Expected Values
                                                                                                                              • 4.5 Binomial Distribution
                                                                                                                                • 4.5.1 The Binomial Distribution
                                                                                                                                  • 4.5.2 Calculating Binomial Probabilities
                                                                                                                                  • 4.6 Normal Distribution
                                                                                                                                    • 4.6.1 The Normal Distribution
                                                                                                                                      • 4.6.2 Calculations with Normal Distribution
                                                                                                                                        • 4.6.3 Standardisation of Normal Variables
                                                                                                                                      • 5. Calculus
                                                                                                                                        • 5.1 Differentiation
                                                                                                                                          • 5.1.1 Introduction to Differentiation
                                                                                                                                            • 5.1.2 Applications of Differentiation
                                                                                                                                            • 5.2 Further Differentiation
                                                                                                                                              • 5.2.1 Differentiating Special Functions
                                                                                                                                                • 5.2.2 Techniques of Differentiation
                                                                                                                                                  • 5.2.3 Second Order Derivatives
                                                                                                                                                    • 5.2.4 Further Applications of Differentiation
                                                                                                                                                      • 5.2.5 Concavity & Points of Inflection
                                                                                                                                                        • 5.2.6 Derivatives & Graphs
                                                                                                                                                        • 5.3 Integration
                                                                                                                                                          • 5.3.1 Introduction to Integration
                                                                                                                                                            • 5.3.2 Applications of Integration
                                                                                                                                                            • 5.4 Further Integration
                                                                                                                                                              • 5.4.1 Integrating Special Functions
                                                                                                                                                                • 5.4.2 Techniques of Integration
                                                                                                                                                                  • 5.4.3 Definite Integrals
                                                                                                                                                                    • 5.4.4 Further Applications of Integration
                                                                                                                                                                    • 5.5 Optimisation
                                                                                                                                                                      • 5.5.1 Modelling with Differentiation
                                                                                                                                                                      • 5.6 Kinematics
                                                                                                                                                                        • 5.6.1 Kinematics Toolkit
                                                                                                                                                                          • 5.6.2 Calculus for Kinematics
                                                                                                                                                                        Paul Freeman

                                                                                                                                                                        Author: Paul

                                                                                                                                                                        Paul has taught mathematics for 20 years and has been an examiner for Edexcel for over a decade. GCSE, A level, pure, mechanics, statistics, discrete – if it’s in a Maths exam, Paul will know about it. Paul is a passionate fan of clear and colourful notes with fascinating diagrams – one of the many reasons he is excited to be a member of the SME team.


                                                                                                                                                                        Save My Exams Logo
                                                                                                                                                                        Resources
                                                                                                                                                                        Home Join Support

                                                                                                                                                                        Members
                                                                                                                                                                        Members Home Account Logout

                                                                                                                                                                        Company
                                                                                                                                                                        About Us Contact Us Jobs Terms Privacy Facebook Twitter

                                                                                                                                                                        Quick Links
                                                                                                                                                                        GCSE Revision Notes IGCSE Revision Notes A Level Revision Notes Biology Chemistry Physics Maths 2022 Advance Information

                                                                                                                                                                         
                                                                                                                                                                        © IB Documents (2) Team & u/aimlesskr
                                                                                                                                                                        IBO was not involved in the production of, and does not endorse, the resources created by Save My Exams.