• IB
  • IB Docs (2) Team
    Logout
  • Maths
  • Biology
  • Chemistry
  • Physics
  • Combined Science
  • English Language
  • Geography
  • Other Subjects
GCSE Maths
Edexcel Topic QuestionsRevision NotesPast PapersPast Papers Questions
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast Papers
GCSE Biology
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE Physics
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Gateway Topic QuestionsRevision NotesPast Papers
GCSE Combined Science
Edexcel Combined: Biology Topic QuestionsRevision NotesPast Papers
Edexcel Combined: Chemistry Topic QuestionsRevision NotesPast Papers
Edexcel Combined: Physics Revision NotesPast Papers
AQA Combined: Biology Topic QuestionsRevision NotesPast Papers
AQA Combined: Chemistry Topic QuestionsRevision NotesPast Papers
AQA Combined: Physics Topic QuestionsRevision NotesPast Papers
OCR Gateway Combined: Biology Topic QuestionsRevision Notes
OCR Gateway Combined: Chemistry Revision Notes
OCR Gateway Combined: Physics Revision Notes
GCSE English Language
AQA Revision NotesPractice PapersPast Papers
Edexcel Past Papers
OCR Past Papers
GCSE Geography
AQA Topic QuestionsRevision Notes
Edexcel Topic Questions
GCSE Other Subjects
AQA English LiteratureBusinessComputer ScienceEconomicsFurther MathsGeographyHistoryPsychologySociologyStatistics
Edexcel English LiteratureBusinessComputer ScienceGeographyHistoryPsychologyStatistics
OCR English LiteratureBusinessComputer ScienceEconomicsPsychology
OCR Gateway GeographyHistory
  • Maths
  • Biology
  • Chemistry
  • Physics
  • Double Science
  • Economics
  • English Language
  • Geography
  • Other Subjects
IGCSE Maths
Edexcel Topic QuestionsRevision NotesPast PapersBronze-Silver-Gold Questions
CIE (Extended) Topic QuestionsRevision NotesPast Papers
CIE (Core) Topic QuestionsPast Papers
IGCSE Biology
Edexcel Topic QuestionsRevision NotesPast Papers
CIE 2020-2022 Topic QuestionsRevision NotesPast Papers
CIE 2023-2025 Topic QuestionsRevision NotesPast Papers
IGCSE Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
CIE 2020-2022 Topic QuestionsRevision NotesPast Papers
CIE 2023-2025 Topic QuestionsRevision NotesPast Papers
IGCSE Physics
Edexcel Topic QuestionsRevision NotesPast Papers
CIE 2020-2022 Topic QuestionsRevision NotesPast Papers
CIE 2023-2025 Topic QuestionsRevision NotesPast Papers
IGCSE Double Science
Edexcel Double: Biology Topic QuestionsRevision NotesPast Papers
Edexcel Double: Chemistry Topic QuestionsRevision NotesPast Papers
Edexcel Double: Physics Topic QuestionsRevision NotesPast Papers
IGCSE Economics
CIE Topic QuestionsRevision NotesPast Papers
IGCSE English Language
CIE Revision NotesPractice PapersPast Papers
Edexcel Past Papers
IGCSE Geography
CIE Revision NotesTopic QuestionsPast Papers
Edexcel Topic QuestionsRevision NotesPast Papers
IGCSE Other Subjects
CIE Additional MathsEnglish LiteratureBusinessComputer ScienceHistorySociology
Edexcel English LiteratureBusinessComputer ScienceHistoryFurther Maths
  • Maths
  • Biology
  • Chemistry
  • Physics
  • English Language
  • Other Subjects
AS Maths
Edexcel Pure MathsMechanicsStatistics
AQA Pure MathsMechanicsStatistics
OCR Pure MathsMechanicsStatistics
CIE Pure 1Pure 2MechanicsProbability & Statistics 1
Edexcel IAS Pure 1Pure 2MechanicsStatistics
AS Biology
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS Chemistry
Edexcel Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision Notes
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS Physics
Edexcel Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Revision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Revision Notes
AS English Language
AQA Past Papers
Edexcel Past Papers
OCR Past Papers
AS Other Subjects
AQA BusinessComputer ScienceEconomicsEnglish LiteratureFurther MathsGeographyHistoryPsychologySociology
Edexcel BusinessEconomicsEnglish LiteratureFurther MathsGeographyHistoryPsychology
OCR BusinessComputer ScienceEconomicsEnglish LiteratureFurther Maths AGeographyHistoryPsychologySociology
CIE Further Maths
  • Maths
  • Biology
  • Chemistry
  • Physics
  • English Language
  • Economics
  • Further Maths
  • Psychology
  • Other Subjects
A Level Maths
Edexcel Pure MathsMechanicsStatistics
AQA Pure MathsMechanicsStatistics
OCR Pure MathsMechanicsStatistics
CIE Pure 1Pure 3MechanicsProbability & Statistics 1Probability & Statistics 2
Edexcel IAL Pure 1Pure 2Pure 3Pure 4Mechanics 1Mechanics 2Statistics 1Statistics 2Decision 1
A Level Biology
Edexcel Topic QuestionsPast Papers
Edexcel A (SNAB) Revision Notes
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast PapersGold Questions
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level Chemistry
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast PapersGold Questions
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level Physics
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsRevision NotesPast Papers
OCR Topic QuestionsRevision NotesPast Papers
CIE 2019-2021 Topic QuestionsRevision NotesPast Papers
CIE 2022-2024 Topic QuestionsRevision NotesPast Papers
Edexcel IAL Topic QuestionsRevision NotesPast Papers
A Level English Language
AQA Past Papers
CIE Past Papers
Edexcel Past Papers
OCR Past Papers
Edexcel IAL Past Papers
A Level Economics
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Topic QuestionsPast Papers
OCR Past Papers
CIE Past Papers
A Level Further Maths
Edexcel Topic QuestionsRevision NotesPast Papers
AQA Past Papers
OCR Past Papers
CIE Past Papers
Edexcel IAL Past Papers
A Level Psychology
AQA Topic QuestionsRevision NotesPast Papers
CIE Past Papers
Edexcel Past Papers
OCR Past Papers
Edexcel IAL Past Papers
A Level Other Subjects
AQA BusinessComputer ScienceEconomicsEnglish LiteratureGeographyHistorySociology
CIE BusinessComputer ScienceEconomicsEnglish LiteratureGeographySociology
Edexcel BusinessEconomics AEnglish LiteratureGeographyHistory
OCR BusinessComputer ScienceEconomicsEnglish LiteratureGeographyHistorySociology
Edexcel IAL English LiteratureGeography
CIE IAL History
  • Biology
  • Chemistry
  • Physics
  • Other Subjects
O Level Biology
CIE Topic QuestionsPast Papers
O Level Chemistry
CIE Topic QuestionsPast Papers
O Level Physics
CIE Topic QuestionsPast Papers
O Level Other Subjects
CIE Additional MathsMaths D
  • Maths
  • Biology
  • Chemistry
  • Physics
Pre U Maths
CIE Topic QuestionsPast Papers
Pre U Biology
CIE Topic QuestionsPast Papers
Pre U Chemistry
CIE Topic QuestionsPast Papers
Pre U Physics
CIE Topic QuestionsPast Papers
  • Maths
  • Biology
  • Chemistry
  • Physics
  • Economics
IB Maths
Maths: AA HL Topic QuestionsRevision NotesPractice Papers
Maths: AI HL Topic QuestionsRevision NotesPractice Papers
Maths: AA SL Topic QuestionsRevision NotesPractice Papers
Maths: AI SL Topic QuestionsRevision NotesPractice Papers
IB Biology
Biology: SL Topic QuestionsRevision NotesPractice Papers
Biology: HL Topic QuestionsRevision NotesPractice Papers
IB Chemistry
Chemistry: SL Topic QuestionsRevision NotesPractice Papers
Chemistry: HL Topic QuestionsRevision NotesPractice Papers
IB Physics
Physics: SL Topic QuestionsRevision NotesPractice Papers
Physics: HL Topic QuestionsRevision NotesPractice Papers
IB Economics
Economics: SL Revision Notes

DP IB Maths: AA HL

Revision Notes

Home / IB / Maths: AA HL / DP / Revision Notes / 1. Number & Algebra / 1.9 Further Complex Numbers / 1.9.2 Forms of Complex Numbers


1.9.2 Forms of Complex Numbers


Modulus-Argument (Polar) Form

How do I write a complex number in modulus-argument (polar) form?

  • The Cartesian form of a complex number, z equals x plus straight i y, is written in terms of its real part, x, and its imaginary part, y
  • If we let r equals vertical line z vertical line and theta equals arg space z, then it is possible to write a complex number in terms of its modulus, r, and its argument, theta, called the modulus-argument (polar) form, given by...
    • z equals r open parentheses cos space theta plus isin space theta close parentheses
    • This is often written as z = r cis θ
    • This is given in the formula book under Modulus-argument (polar) form and exponential (Euler) form
  • It is usual to give arguments in the range negative pi space less than space theta space less or equal than space pi  or  0 space less or equal than space theta space less than space 2 pi
    • Negative arguments should be shown clearly
    • e.g. z equals 2 open parentheses cos space open parentheses negative pi over 3 close parentheses plus isin space open parentheses negative pi over 3 close parentheses close parentheses space equals space 2 space cis space open parentheses negative straight pi over 3 close parentheses
      • without simplifying cos invisible function application left parenthesis negative pi over 3 right parenthesis  to either cos invisible function application open parentheses pi over 3 close parentheses or 1 half
  • The complex conjugate of r cis θ is r cis (-θ )
  • If a complex number is given in the form z equals r open parentheses cos space theta minus isin space theta close parentheses, then it is not in modulus-argument (polar) form due to the minus sign
    • It can be converted by considering transformations of trigonometric functions
      • negative sin invisible function application theta space equals space sin invisible function application left parenthesis negative theta right parenthesis and cos invisible function application theta space equals space cos invisible function application left parenthesis negative theta right parenthesis
    • So  z equals r open parentheses cos invisible function application theta minus isin invisible function application theta close parentheses space equals space z equals r open parentheses cos invisible function application open parentheses negative theta close parentheses plus isin invisible function application open parentheses negative theta close parentheses close parentheses space equals space r space cis space open parentheses negative theta close parentheses  
  • To convert from modulus-argument (polar) form back to Cartesian form, evaluate the real and imaginary parts
    • E.g. z equals 2 open parentheses cos invisible function application open parentheses negative pi over 3 close parentheses plus isin invisible function application open parentheses negative pi over 3 close parentheses close parentheses becomes z equals 2 open parentheses 1 half plus straight i open parentheses negative fraction numerator square root of 3 over denominator 2 end fraction close parentheses close parentheses equals 1 minus square root of 3 blank straight i

How do I multiply complex numbers in modulus-argument (polar) form?

  • The main benefit of writing complex numbers in modulus-argument (polar) form is that they multiply and divide very easily 
  • To multiply two complex numbers in modulus-argument (polar) form we multiply their moduli and add their arguments
    • open vertical bar z subscript 1 z subscript 2 close vertical bar equals open vertical bar z subscript 1 close vertical bar open vertical bar z subscript 2 close vertical bar
    • arg space left parenthesis z subscript 1 z subscript 2 right parenthesis equals arg space z subscript 1 plus arg space z subscript 2
  • So if z1 = r1 cis (θ1) and z2 = r2 cis (θ2)
    • z1 z2 = r1r2 cis (θ1 + θ2)
  • Sometimes the new argument, theta subscript 1 plus theta subscript 2, does not lie in the range negative pi space less than space theta space less or equal than space pi (or  0 space less or equal than space theta space less than space 2 pi  if this is being used)
    • An out-of-range argument can be adjusted by either adding or subtracting 2 straight pi
    • E.g. If theta subscript 1 equals fraction numerator 2 pi over denominator 3 end fraction and theta subscript 2 equals pi over 2  then  theta subscript 1 plus theta subscript 2 space equals space fraction numerator 7 straight pi over denominator 6 end fraction 
    • This is currently not in the range negative pi space less than space theta space less or equal than space pi
    • Subtracting 2 straight pi from fraction numerator 7 straight pi over denominator 6 end fraction to give negative fraction numerator 5 straight pi over denominator 6 end fraction, a new argument is formed
      •  This lies in the correct range and represents the same angle on an Argand diagram
  • The rules of multiplying the moduli and adding the arguments can also be applied when…
    • …multiplying three complex numbers together, z subscript 1 z subscript 2 z subscript 3, or more
    • …finding powers of a complex number (e.g. z squared can be written as z z)
  • The rules for multiplication can be proved algebraically by multiplying z1 = r1 cis (θ1) by z2 = r2 cis (θ2), expanding the brackets and using compound angle formulae

How do I divide complex numbers in modulus-argument (polar) form?

  • To divide two complex numbers in modulus-argument (polar) form, we divide their moduli and subtract their arguments
    • open vertical bar z subscript 1 over z subscript 2 close vertical bar blank equals fraction numerator open vertical bar z subscript 1 close vertical bar over denominator vertical line z subscript 2 vertical line end fraction
    • arg space open parentheses z subscript 1 over z subscript 2 close parentheses equals arg space z subscript 1 minus arg space z subscript 2
  • So if z1 = r1 cis (θ1) and z2 = r2 cis (θ2) then 
    • z subscript 1 over z subscript 2 equals r subscript 1 over r subscript 2 cis space open parentheses theta subscript 1 minus theta subscript 2 close parentheses blank
  • Sometimes the new argument, theta subscript 1 minus theta subscript 2, can lie out of the range negative pi space less than space theta space less or equal than space pi (or the range 0 space less than space theta space less or equal than space 2 pi if this is being used)
    • You can add or subtract 2 straight pi to bring out-of-range arguments back in range
  • The rules for division can be proved algebraically by dividing z1 = r1 cis (θ1) by z2 = r2 cis (θ2) using complex division and the compound angle formulae

Exam Tip

  • Remember that r cis θ only refers to  r open parentheses cos space theta plus isin space theta close parentheses
    • If you see a complex number written in the form z equals r open parentheses cos space theta minus isin space theta close parentheses then you will need to convert it to the correct form first
    • Make sure you are confident with basic trig identities to help you do this

Worked Example

Let z subscript 1 equals 4 square root of 2 blank cis blank fraction numerator 3 pi over denominator 4 end fraction  and z subscript 2 equals square root of 8 open parentheses cos invisible function application open parentheses pi over 2 close parentheses minus isin invisible function application open parentheses pi over 2 close parentheses close parentheses

a)
Find z subscript 1 z subscript 2, giving your answer in the form r open parentheses cos invisible function application theta plus isin invisible function application theta close parentheses where 0 less or equal than theta less than 2 pi

1-9-2-ib-aa-hl-forms-of-cn-we-solution-1-a

b)
Find z subscript 1 over z subscript 2, giving your answer in the form r open parentheses cos invisible function application theta plus isin invisible function application theta close parentheses where negative straight pi less or equal than theta less than pi

1-9-2-ib-aa-hl-forms-of-cn-we-solution-1-b

Exponential (Euler's) Form

How do we write a complex number in Euler's (exponential) form?

  • A complex number can be written in Euler's form as z equals r straight e to the power of straight i theta end exponent 
    • This relates to the modulus-argument (polar) form as z equals r straight e to the power of straight i theta end exponent equals r blank cis blank theta
    • This shows a clear link between exponential functions and trigonometric functions
    • This is given in the formula booklet under 'Modulus-argument (polar) form and exponential (Euler) form'
  • The argument is normally given in the range 0 ≤ θ < 2π
    • However in exponential form other arguments can be used and the same convention of adding or subtracting 2π can be applied

How do we multiply and divide complex numbers in Euler's form?

  • Euler's form allows for quick and easy multiplication and division of complex numbers
  • If z subscript 1 equals r subscript 1 straight e to the power of straight i theta subscript 1 end exponent spaceand z subscript 2 equals r subscript 2 straight e to the power of straight i theta subscript 2 end exponent then 
    • z subscript 1 cross times z subscript 2 equals r subscript 1 r subscript 2 straight e to the power of straight i open parentheses theta subscript 1 plus theta subscript 2 close parentheses end exponent
      • Multiply the moduli and add the arguments
    • z subscript 1 over z subscript 2 equals r subscript 1 over r subscript 2 straight e to the power of straight i open parentheses theta subscript 1 minus theta subscript 2 close parentheses end exponent
      • Divide the moduli and subtract the arguments
  • Using these rules makes multiplying and dividing more than two complex numbers much easier than in Cartesian form
  • When a complex number is written in Euler's form it is easy to raise that complex number to a power
    • If z equals r straight e to the power of straight i theta end exponent,  z squared equals r squared straight e to the power of 2 straight i theta end exponent  and  z to the power of n equals r to the power of n straight e to the power of ni theta end exponent

What are some common numbers in exponential form?

  • As cos space left parenthesis 2 pi right parenthesis equals 1 and sin space left parenthesis 2 pi right parenthesis equals 0 you can write:
    • 1 equals straight e to the power of 2 pi straight i end exponent
  • Using the same idea you can write:
    • 1 equals straight e to the power of 0 equals straight e to the power of 2 pi straight i end exponent equals straight e to the power of 4 pi straight i end exponent equals straight e to the power of 6 pi straight i end exponent equals straight e to the power of 2 k pi straight i end exponent
    • where k is any integer
  • As cos invisible function application open parentheses pi close parentheses equals negative 1 and sin invisible function application left parenthesis pi right parenthesis equals 0 you can write:
    • straight e to the power of pi straight i end exponent equals negative 1
    • Or more commonly written as straight e to the power of iπ plus 1 equals 0
      • This is known as Euler's identity and is considered by some mathematicians as the most beautiful equation
  • As cos invisible function application open parentheses pi over 2 close parentheses equals 0 and sin invisible function application open parentheses pi over 2 close parentheses equals 1 you can write:
    • straight i equals straight e to the power of pi over 2 straight i end exponent

Exam Tip

  • Euler's form allows for easy manipulation of complex numbers, in an exam it is often worth the time converting a complex number into Euler's form if further calculations need to be carried out
    • Familiarise yourself with which calculations are easier in which form, for example multiplication and division are easiest in Euler's form but adding and subtracting are easiest in Cartesian form

Worked Example

Consider the complex number z equals 2 straight e to the power of pi over 3 straight i end exponent. Calculate z squared giving your answer in the form r straight e to the power of straight i theta end exponent.

1-9-2-ib-aa-hl-forms-of-cn-we-solution-2-eulers

Conversion of Forms

Converting from Cartesian form to modulus-argument (polar) form or exponential (Euler's) form.

  • To convert from Cartesian form to modulus-argument (polar) form or exponential (Euler) form use 
    • r equals open vertical bar z close vertical bar equals square root of x squared plus y squared end root
  • and  
    • theta equals arg invisible function application z

Converting from modulus-argument (polar) form or exponential (Euler's) form to Cartesian form.

  • To convert from modulus-argument (polar) form to Cartesian form
    • Write z = r (cosθ + isinθ ) as z = r cosθ + (r sinθ )i
    • Find the values of the trigonometric ratios r sinθ and r cosθ
      • You may need to use your knowledge of trig exact values
    • Rewrite as z = a + bi where
      • a = r cosθ and b = r sinθ
  • To convert from exponential (Euler’s) form to Cartesian form first rewrite z = r eiθ  in the form z = r cosθ + (r sinθ)i and then follow the steps above

 

Exam Tip

  • When converting from Cartesian form into Polar or Euler's form, always leave your modulus and argument as an exact value
    • Rounding values too early may result in inaccuracies later on

Worked Example

Two complex numbers are given by z subscript 1 equals 2 plus 2 straight i and z subscript 2 equals 3 straight e to the power of fraction numerator 2 pi over denominator 3 end fraction straight i end exponent.

a)
Write z subscript 1 in the form r straight e to the power of straight i theta end exponent.

1-9-2-ib-aa-hl-forms-of-cn-we-solution-3-a

b)
Write z subscript 2 in the form r open parentheses cos invisible function application theta plus isin invisible function application theta close parentheses and then convert it to Cartesian form.

1-9-2-ib-aa-hl-forms-of-cn-we-solution-3-b

 

 



  • 1. Number & Algebra
    • 1.1 Number & Algebra Toolkit
      • 1.1.1 Standard Form
        • 1.1.2 Laws of Indices
          • 1.1.3 Partial Fractions
          • 1.2 Exponentials & Logs
            • 1.2.1 Introduction to Logarithms
              • 1.2.2 Laws of Logarithms
                • 1.2.3 Solving Exponential Equations
                • 1.3 Sequences & Series
                  • 1.3.1 Language of Sequences & Series
                    • 1.3.2 Arithmetic Sequences & Series
                      • 1.3.3 Geometric Sequences & Series
                        • 1.3.4 Applications of Sequences & Series
                          • 1.3.5 Compound Interest & Depreciation
                          • 1.4 Simple Proof & Reasoning
                            • 1.4.1 Proof
                            • 1.5 Further Proof & Reasoning
                              • 1.5.1 Proof by Induction
                                • 1.5.2 Proof by Contradiction
                                • 1.6 Binomial Theorem
                                  • 1.6.1 Binomial Theorem
                                    • 1.6.2 Extension of The Binomial Theorem
                                    • 1.7 Permutations & Combinations
                                      • 1.7.1 Counting Principles
                                        • 1.7.2 Permutations & Combinations
                                        • 1.8 Complex Numbers
                                          • 1.8.1 Intro to Complex Numbers
                                            • 1.8.2 Modulus & Argument
                                              • 1.8.3 Introduction to Argand Diagrams
                                              • 1.9 Further Complex Numbers
                                                • 1.9.1 Geometry of Complex Numbers
                                                  • 1.9.2 Forms of Complex Numbers
                                                    • 1.9.3 Complex Roots of Polynomials
                                                      • 1.9.4 De Moivre's Theorem
                                                        • 1.9.5 Roots of Complex Numbers
                                                        • 1.10 Systems of Linear Equations
                                                          • 1.10.1 Systems of Linear Equations
                                                            • 1.10.2 Algebraic Solutions
                                                          • 2. Functions
                                                            • 2.1 Linear Functions & Graphs
                                                              • 2.1.1 Equations of a Straight Line
                                                              • 2.2 Quadratic Functions & Graphs
                                                                • 2.2.1 Quadratic Functions
                                                                  • 2.2.2 Factorising & Completing the Square
                                                                    • 2.2.3 Solving Quadratics
                                                                      • 2.2.4 Quadratic Inequalities
                                                                        • 2.2.5 Discriminants
                                                                        • 2.3 Functions Toolkit
                                                                          • 2.3.1 Language of Functions
                                                                            • 2.3.2 Composite & Inverse Functions
                                                                              • 2.3.3 Symmetry of Functions
                                                                                • 2.3.4 Graphing Functions
                                                                                • 2.4 Other Functions & Graphs
                                                                                  • 2.4.1 Exponential & Logarithmic Functions
                                                                                    • 2.4.2 Solving Equations
                                                                                      • 2.4.3 Modelling with Functions
                                                                                      • 2.5 Reciprocal & Rational Functions
                                                                                        • 2.5.1 Reciprocal & Rational Functions
                                                                                        • 2.6 Transformations of Graphs
                                                                                          • 2.6.1 Translations of Graphs
                                                                                            • 2.6.2 Reflections of Graphs
                                                                                              • 2.6.3 Stretches Graphs
                                                                                                • 2.6.4 Composite Transformations of Graphs
                                                                                                • 2.7 Polynomial Functions
                                                                                                  • 2.7.1 Factor & Remainder Theorem
                                                                                                    • 2.7.2 Polynomial Division
                                                                                                      • 2.7.3 Polynomial Functions
                                                                                                        • 2.7.4 Roots of Polynomials
                                                                                                        • 2.8 Inequalities
                                                                                                          • 2.8.1 Solving Inequalities Graphically
                                                                                                            • 2.8.2 Polynomial Inequalities
                                                                                                            • 2.9 Further Functions & Graphs
                                                                                                              • 2.9.1 Modulus Functions
                                                                                                                • 2.9.2 Modulus Transformations
                                                                                                                  • 2.9.3 Modulus Equations & Inequalities
                                                                                                                    • 2.9.4 Reciprocal & Square Transformations
                                                                                                                  • 3. Geometry & Trigonometry
                                                                                                                    • 3.1 Geometry Toolkit
                                                                                                                      • 3.1.1 Coordinate Geometry
                                                                                                                        • 3.1.2 Radian Measure
                                                                                                                          • 3.1.3 Arcs & Sectors
                                                                                                                          • 3.2 Geometry of 3D Shapes
                                                                                                                            • 3.2.1 3D Coordinate Geometry
                                                                                                                              • 3.2.2 Volume & Surface Area
                                                                                                                              • 3.3 Trigonometry Toolkit
                                                                                                                                • 3.3.1 Pythagoras & Right-Angled Triganometry
                                                                                                                                  • 3.3.2 Non Right-Angled Trigonometry
                                                                                                                                    • 3.3.3 Applications of Trigonometry & Pythagoras
                                                                                                                                    • 3.4 Trigonometry
                                                                                                                                      • 3.4.1 The Unit Circle
                                                                                                                                        • 3.4.2 Exact Values
                                                                                                                                        • 3.5 Trigonometric Functions & Graphs
                                                                                                                                          • 3.5.1 Graphs of Trigonometric Functions
                                                                                                                                            • 3.5.2 Transformations of Trigonometric Functions
                                                                                                                                              • 3.5.3 Modelling with Trigonometric Functions
                                                                                                                                              • 3.6 Trigonometric Equations & Identities
                                                                                                                                                • 3.6.1 Simple Identities
                                                                                                                                                  • 3.6.2 Compound Angle Formulae
                                                                                                                                                    • 3.6.3 Double Angle Formulae
                                                                                                                                                      • 3.6.4 Relationship Between Trigonometric Ratios
                                                                                                                                                        • 3.6.5 Linear Trigonometric Equations
                                                                                                                                                          • 3.6.6 Quadratic Trigonometric Equations
                                                                                                                                                          • 3.7 Inverse & Reciprocal Trig Functions
                                                                                                                                                            • 3.7.1 Reciprocal Trig Functions
                                                                                                                                                              • 3.7.2 Inverse Trig Functions
                                                                                                                                                              • 3.8 Further Trigonometry
                                                                                                                                                                • 3.8.1 Trigonometric Proof
                                                                                                                                                                  • 3.8.2 Strategy for Trigonometric Equations
                                                                                                                                                                  • 3.9 Vector Properties
                                                                                                                                                                    • 3.9.1 Introduction to Vectors
                                                                                                                                                                      • 3.9.2 Position & Displacement Vectors
                                                                                                                                                                        • 3.9.3 Magnitude of a Vector
                                                                                                                                                                          • 3.9.4 The Scalar Product
                                                                                                                                                                            • 3.9.5 Geometric Proof with Vectors
                                                                                                                                                                            • 3.10 Vector Equations of Lines
                                                                                                                                                                              • 3.10.1 Vector Equations of Lines
                                                                                                                                                                                • 3.10.2 Applications to Kinematics
                                                                                                                                                                                  • 3.10.3 Pairs of Lines in 3D
                                                                                                                                                                                    • 3.10.4 The Vector Product
                                                                                                                                                                                      • 3.10.5 Shortest Distances with Lines
                                                                                                                                                                                      • 3.11 Vector Planes
                                                                                                                                                                                        • 3.11.1 Vector Equations of Planes
                                                                                                                                                                                          • 3.11.2 Intersections of Lines & Planes
                                                                                                                                                                                            • 3.11.3 Angles Between Lines & Planes
                                                                                                                                                                                              • 3.11.4 Shortest Distances with Planes
                                                                                                                                                                                            • 4. Statistics & Probability
                                                                                                                                                                                              • 4.1 Statistics Toolkit
                                                                                                                                                                                                • 4.1.1 Sampling & Data Collection
                                                                                                                                                                                                  • 4.1.2 Statistical Measures
                                                                                                                                                                                                    • 4.1.3 Frequency Tables
                                                                                                                                                                                                      • 4.1.4 Linear Transformations of Data
                                                                                                                                                                                                        • 4.1.5 Outliers
                                                                                                                                                                                                          • 4.1.6 Univariate Data
                                                                                                                                                                                                            • 4.1.7 Interpreting Data
                                                                                                                                                                                                            • 4.2 Correlation & Regression
                                                                                                                                                                                                              • 4.2.1 Bivariate Data
                                                                                                                                                                                                                • 4.2.2 Correlation & Regression
                                                                                                                                                                                                                • 4.3 Probability
                                                                                                                                                                                                                  • 4.3.1 Probability & Types of Events
                                                                                                                                                                                                                    • 4.3.2 Conditional Probability
                                                                                                                                                                                                                      • 4.3.3 Bayes' Theorem
                                                                                                                                                                                                                        • 4.3.4 Sample Space Diagrams
                                                                                                                                                                                                                        • 4.4 Probability Distributions
                                                                                                                                                                                                                          • 4.4.1 Discrete Probability Distributions
                                                                                                                                                                                                                            • 4.4.2 Mean & Variance
                                                                                                                                                                                                                            • 4.5 Binomial Distribution
                                                                                                                                                                                                                              • 4.5.1 The Binomial Distribution
                                                                                                                                                                                                                                • 4.5.2 Calculating Binomial Probabilities
                                                                                                                                                                                                                                • 4.6 Normal Distribution
                                                                                                                                                                                                                                  • 4.6.1 The Normal Distribution
                                                                                                                                                                                                                                    • 4.6.2 Calculations with Normal Distribution
                                                                                                                                                                                                                                      • 4.6.3 Standardisation of Normal Variables
                                                                                                                                                                                                                                      • 4.7 Further Probability Distributions
                                                                                                                                                                                                                                        • 4.7.1 Probability Density Function
                                                                                                                                                                                                                                      • 5. Calculus
                                                                                                                                                                                                                                        • 5.1 Differentiation
                                                                                                                                                                                                                                          • 5.1.1 Introduction to Differentiation
                                                                                                                                                                                                                                            • 5.1.2 Applications of Differentiation
                                                                                                                                                                                                                                            • 5.2 Further Differentiation
                                                                                                                                                                                                                                              • 5.2.1 Differentiating Special Functions
                                                                                                                                                                                                                                                • 5.2.2 Techniques of Differentiation
                                                                                                                                                                                                                                                  • 5.2.3 Higher Order Derivatives
                                                                                                                                                                                                                                                    • 5.2.4 Further Applications of Differentiation
                                                                                                                                                                                                                                                      • 5.2.5 Concavity & Points of Inflection
                                                                                                                                                                                                                                                        • 5.2.6 Derivatives & Graphs
                                                                                                                                                                                                                                                        • 5.3 Integration
                                                                                                                                                                                                                                                          • 5.3.1 Introduction to Integration
                                                                                                                                                                                                                                                            • 5.3.2 Applications of Integration
                                                                                                                                                                                                                                                            • 5.4 Further Integration
                                                                                                                                                                                                                                                              • 5.4.1 Integrating Special Functions
                                                                                                                                                                                                                                                                • 5.4.2 Techniques of Integration
                                                                                                                                                                                                                                                                  • 5.4.3 Definite Integrals
                                                                                                                                                                                                                                                                    • 5.4.4 Further Applications of Integration
                                                                                                                                                                                                                                                                    • 5.5 Optimisation
                                                                                                                                                                                                                                                                      • 5.5.1 Modelling with Differentiation
                                                                                                                                                                                                                                                                      • 5.6 Kinematics
                                                                                                                                                                                                                                                                        • 5.6.1 Kinematics Toolkit
                                                                                                                                                                                                                                                                          • 5.6.2 Calculus for Kinematics
                                                                                                                                                                                                                                                                          • 5.7 Basic Limits & Continuity
                                                                                                                                                                                                                                                                            • 5.7.1 Basic Limits & Continuity
                                                                                                                                                                                                                                                                            • 5.8 Advanced Differentiation
                                                                                                                                                                                                                                                                              • 5.8.1 First Principles Differentiation
                                                                                                                                                                                                                                                                                • 5.8.2 Applications of Chain Rule
                                                                                                                                                                                                                                                                                  • 5.8.3 Implicit Differentiation
                                                                                                                                                                                                                                                                                    • 5.8.4 Differentiating Further Functions
                                                                                                                                                                                                                                                                                    • 5.9 Advanced Integration
                                                                                                                                                                                                                                                                                      • 5.9.1 Integrating Further Functions
                                                                                                                                                                                                                                                                                        • 5.9.2 Further Techniques of Integration
                                                                                                                                                                                                                                                                                          • 5.9.3 Integrating with Partial Fractions
                                                                                                                                                                                                                                                                                            • 5.9.4 Advanced Applications of Integration
                                                                                                                                                                                                                                                                                              • 5.9.5 Modelling with Volumes of Revolution
                                                                                                                                                                                                                                                                                              • 5.10 Differential Equations
                                                                                                                                                                                                                                                                                                • 5.10.1 Numerical Solutions to Differential Equations
                                                                                                                                                                                                                                                                                                  • 5.10.2 Analytical Solutions to Differential Equations
                                                                                                                                                                                                                                                                                                    • 5.10.3 Modelling with Differential Equations
                                                                                                                                                                                                                                                                                                    • 5.11 MacLaurin Series
                                                                                                                                                                                                                                                                                                      • 5.11.1 Maclaurin Series
                                                                                                                                                                                                                                                                                                        • 5.11.2 Maclaurin Series from Differential Equations
                                                                                                                                                                                                                                                                                                        • 5.12 Further Limits (inc l'Hôpital's Rule)
                                                                                                                                                                                                                                                                                                          • 5.12.1 Further Limits
                                                                                                                                                                                                                                                                                                        Amber Perry

                                                                                                                                                                                                                                                                                                        Author: Amber

                                                                                                                                                                                                                                                                                                        Amber gained a first class degree in Mathematics & Meteorology from the University of Reading before training to become a teacher. She is passionate about teaching, having spent 8 years teaching GCSE and A Level Mathematics both in the UK and internationally. Amber loves creating bright and informative resources to help students reach their potential.


                                                                                                                                                                                                                                                                                                        Save My Exams Logo
                                                                                                                                                                                                                                                                                                        Resources
                                                                                                                                                                                                                                                                                                        Home Join Support

                                                                                                                                                                                                                                                                                                        Members
                                                                                                                                                                                                                                                                                                        Members Home Account Logout

                                                                                                                                                                                                                                                                                                        Company
                                                                                                                                                                                                                                                                                                        About Us Contact Us Jobs Terms Privacy Facebook Twitter

                                                                                                                                                                                                                                                                                                        Quick Links
                                                                                                                                                                                                                                                                                                        GCSE Revision Notes IGCSE Revision Notes A Level Revision Notes Biology Chemistry Physics Maths 2022 Advance Information

                                                                                                                                                                                                                                                                                                         
                                                                                                                                                                                                                                                                                                        © IB Documents (2) Team & u/aimlesskr
                                                                                                                                                                                                                                                                                                        IBO was not involved in the production of, and does not endorse, the resources created by Save My Exams.